Practice With Solutions

back to index  |  new

Determine all polynomials such that $P(0) = 0$ and $P(x^2 + 1) = P(x)^2 + 1$.


Consider the lines that meet the graph $y = 2x^4 + 7x^3 + 3x - 5$ in four distinct points $P_i = (x_i, y_i), i = 1, 2, 3, 4$. Prove that $$\frac{x_1 + x_2 + x_3 + x_44}{4}$$ is independent of the line, and compute its value.

Find the value of $(2 + \sqrt{5})^{1/3} - (-2 + \sqrt{5})^{1/3}$.


Let $\triangle{ABC}$ be a right triangle whose sides lengths are all integers. If $\triangle{ABC}$'s perimeter is 30, find its incircle's area.

How many terms with odd coefficients are there in the expanded form of $$((x+1)(x+2)\cdots(x+2015))^{2016}$$

Find the largest integer not exceeding $1 + \frac{1}{\sqrt{2}}+ \frac{1}{\sqrt{3}} + \cdots + + \frac{1}{\sqrt{10000}}$

For some particular value of $N$, when $(a+b+c+d+1)^N$ is expanded and like terms are combined, the resulting expression contains exactly $1001$ terms that include all four variables $a, b,c,$ and $d$, each to some positive power. What is $N$?


Let $n$ be an integer greater than or equal to 3. Prove that there is a set of $n$ points in the plane such that the distance between any two points is irrational and each set of three points determines a non-degenerate triangle with rational area.


Find a square number which has two thousand and eighteen $6$s and some numbers of $0$s?


What is the tens digit of $2015^{2016}-2017?$


Given $\triangle{ABC}$, let $m_a, m_b,$ and $m_c$ be the lengths of three medians. Find its area $S_{\triangle{ABC}}$ with respect to $m_a, m_b,$ and $m_c$.

There exist some integers, $a$, such that the equation $(a+1)x^2 -(a^2+1)x+2a^2-6=0$ is solvable in integers. Find the sum of all such $a$.

Let $a_n=\binom{200}{n}(\sqrt[3]{6})^{200-n}\left(\frac{1}{\sqrt{2}}\right)^n$, where $n=1$, $2$, $\cdots$, $95$. Find the number of integer terms in $\{a_n\}$.


Let sequence $\{a_n\}$ satisfy the condition: $a_1=\frac{\pi}{6}$ and $a_{n+1}=\arctan(\sec a_n)$, where $n\in Z^+$. There exists a positive integer $m$ such that $\sin{a_1}\cdot\sin{a_2}\cdots\sin{a_m}=\frac{1}{100}$. Find $m$.

As shown in diagram below, find the degree measure of $\angle{ADB}$.


Let $n$ be a positive integer, and $d$ is a positive divisor of $2n^2$. Show that $(n^2+d)$ cannot be a square number.

Let even function $f(x)$ and odd function $g(x)$ satisfy the relationship of $f(x)+g(x)=\sqrt{1+x+x^2}$. Find $f(3)$.

Let $f\Big(\dfrac{1}{x}\Big)=\dfrac{1}{x^2+1}$. Compute $$f\Big(\dfrac{1}{2013}\Big)+f\Big(\dfrac{1}{2012}\Big)+f\Big(\dfrac{1}{2011}\Big)+\cdots +f\Big(\dfrac{1}{2}\Big)+f(1)+f(2)+\cdots +f(2011)+f(2012)+f(2013)$$

Let $f(x)=x^{-\frac{k^2}{2}+\frac{3}{2}k+1}$ be an odd function where $k$ is an integer. If $f(x)$ is monotonically increasing when $x\in(0,+\infty)$, find all the possible values of $k$.

Let $G$ be the centroid of $\triangle{ABC}$. Points $M$ and $N$ are on side $AB$ and $AC$, respectively such that $\overline{AM} = m\cdot\overline{AB}$ and $\overline{AN} = n\cdot\overline{AC}$ where $m$ and $n$ are two positive real numbers. Find the minimal value of $mn$.


An infinite number of equilateral triangles are constructed as shown on the right. Each inner triangle is inscribed in its immediate outsider and is shifted by a constant angle $\beta$. If the area of the biggest triangle equals to the sum of areas of all the other triangles, find the value of $\beta$ in terms of degrees.


For $-1 < r < 1$, let $S(r)$ denote the sum of the geometric series $$12+12r+12r^2+12r^3+\cdots .$$Let $a$ between $-1$ and $1$ satisfy $S(a)S(-a)=2016$. Find $S(a)+S(-a)$.

A regular icosahedron is a $20$-faced solid where each face is an equilateral triangle and five triangles meet at every vertex. The regular icosahedron shown below has one vertex at the top, one vertex at the bottom, an upper pentagon of five vertices all adjacent to the top vertex and all in the same horizontal plane, and a lower pentagon of five vertices all adjacent to the bottom vertex and all in another horizontal plane. Find the number of paths from the top vertex to the bottom vertex such that each part of a path goes downward or horizontally along an edge of the icosahedron, and no vertex is repeated.

A right prism with height $h$ has bases that are regular hexagons with sides of length $12$. A vertex $A$ of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain $A$ measures $60^{\circ}$. Find $h^2$.

For a permutation $p = (a_1,a_2,\ldots,a_9)$ of the digits $1,2,\ldots,9$, let $s(p)$ denote the sum of the three $3$-digit numbers $a_1a_2a_3$, $a_4a_5a_6$, and $a_7a_8a_9$. Let $m$ be the minimum value of $s(p)$ subject to the condition that the units digit of $s(p)$ is $0$. Let $n$ denote the number of permutations $p$ with $s(p) = m$. Find $|m - n|$.