###### back to index | new

Let $S$ be the set of all ordered triple of integers $(a_1,a_2,a_3)$ with $1 \le a_1,a_2,a_3 \le 10$. Each ordered triple in $S$ generates a sequence according to the rule $a_n=a_{n-1}\cdot | a_{n-2}-a_{n-3} |$ for all $n \ge 4$. Find the number of such sequences for which $a_n=0$ for some $n$.

Let $\{a_k\}_{k=1}^{2011}$ be the sequence of real numbers defined by $a_1=0.201,$ $a_2=(0.2011)^{a_1},$ $a_3=(0.20101)^{a_2},$ $a_4=(0.201011)^{a_3}$, and in general, $a_k=\begin{cases}(0.\underbrace{20101\cdots 0101}_{k+2\text{ digits}})^{a_{k-1}}\qquad\text{if }k\text{ is odd,}\\(0.\underbrace{20101\cdots 01011}_{k+2\text{ digits}})^{a_{k-1}}\qquad\text{if }k\text{ is even.}\end{cases}$ Rearranging the numbers in the sequence $\{a_k\}_{k=1}^{2011}$ in decreasing order produces a new sequence $\{b_k\}_{k=1}^{2011}$. What is the sum of all integers $k$, $1\le k \le 2011$, such that $a_k=b_k?$

Let $(a_1,a_2, \dots ,a_{10})$ be a list of the first 10 positive integers such that for each $2 \le i \le 10$ either $a_i+1$ or $a_i-1$ or both appear somewhere before $a_i$ in the list. How many such lists are there?

Let $A_0=(0,0)$. Distinct points $A_1,A_2,\dots$ lie on the $x$-axis, and distinct points $B_1,B_2,\dots$ lie on the graph of $y=\sqrt{x}$. For every positive integer $n,\ A_{n-1}B_nA_n$ is an equilateral triangle. What is the least $n$ for which the length $A_0A_n\geq100$?

A finite sequence of three-digit integers has the property that the tens and units digits of each term are, respectively, the hundreds and tens digits of the next term, and the tens and units digits of the last term are, respectively, the hundreds and tens digits of the first term. For example, such a sequence might begin with the terms 247, 475, and 756 and end with the term 824. Let $S$ be the sum of all the terms in the sequence. What is the largest prime factor that always divides $S$?

The first term of a sequence is $2005$. Each succeeding term is the sum of the cubes of the digits of the previous terms. What is the $2005^\text{th}$ term of the sequence?

Each term in the sequence that begins 13, 9, 18, $\cdots$ is the sum of three times the tens digit and two times the units digit of the previous term. What is the greatest value of any term in this sequence?

Define a sequence of positive integers $s_1, s_2, . . . , s_{10}$ to be $terrible$ if the following conditions are satisfied for any pair of positive integers $i$ and $j$ satisfying $1 \le i < j \le 10$: - $s_i > s_j$ - $j - i + 1$ divides the quantity $s_i + s_{i+1} + \cdots + s_j$ Determine the minimum possible value of $s_1 + s_2 + \cdots + s_{10}$ over all terrible sequences.

Prove that $5x^2\pm 4$ is a perfect square if and only if $x$ is a term in the Fibonacci sequence.

Show that $1^{2017}+2^{2017}+\cdots + n^{2017}$ is not divisible by $(n+2)$ for any positive integer $n$.

Find the remainder when $1\times 2 + 2\times 3 + 3\times 4 + \cdots + 2018\times 2019$ is divided by $2020$.

Let $\{a_n\}$ be a sequence defined as $a_n=\lfloor{n\sqrt{2}}\rfloor$ where $\lfloor{x}\rfloor$ indicates the largest integer not exceeding $x$. Show that this sequence has infinitely many square numbers.

Consider the sequence of numbers: $4,7,1,8,9,7,6,\dots$ For $n>2$, the $n$-th term of the sequence is the units digit of the sum of the two previous terms. Let $S_n$ denote the sum of the first $n$ terms of this sequence. The smallest value of $n$ for which $S_n>10,000$ is:

Let sequence $\{a_n\}$ satisfy the condition: $a_1=\frac{\pi}{6}$ and $a_{n+1}=\arctan(\sec a_n)$, where $n\in Z^+$. There exists a positive integer $m$ such that $\sin{a_1}\cdot\sin{a_2}\cdots\sin{a_m}=\frac{1}{100}$. Find $m$.

The sequences of positive integers $1,a_2, a_3,...$ and $1,b_2, b_3,...$ are an increasing arithmetic sequence and an increasing geometric sequence, respectively. Let $c_n=a_n+b_n$. There is an integer $k$ such that $c_{k-1}=100$ and $c_{k+1}=1000$. Find $c_k$.

For $1 \leq i \leq 215$ let $a_i = \dfrac{1}{2^{i}}$ and $a_{216} = \dfrac{1}{2^{215}}$. Let $x_1, x_2, ..., x_{215}$ be positive real numbers such that $\sum_{i=1}^{215} x_i=1$ and $\sum_{i \leq i < j \leq 216} x_ix_j = \dfrac{107}{215} + \sum_{i=1}^{216} \dfrac{a_i x_i^{2}}{2(1-a_i)}$. The maximum possible value of $x_2=\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Let sequence $\{a_n\}$ satisfy $a_1=2$ and $a_{n+1}=\frac{2(n+2)}{n+1}a_n$ where $n\in \mathbb{Z}^+$. Compute the value of $$\frac{a_{2014}}{a_1+a_2+\cdots+a_{2013}}$$

Let $\alpha$ and $\beta$ be the two roots of the equation $x^2 -x - 1=0$. If $$a_n = \frac{\alpha^n - \beta^n}{\alpha -\beta}\quad(n=1, 2, \cdots)$$ Show that - For any positive integer $n$, it always hold $a_{n+2}=a_{n+1}+a_n$ - Find all positive integers $a, b$ $( a < b )$ satisfying $b\mid a_n-2na^n$ holds for any positive integer $n$

Let $\{a_n\}$ be an increasing geometric sequence satisfying $a_1+a_2=6$ and $a_3+a_4=24$. Let $\{b_n\}$ be another sequence satisfying $b_n=\frac{a_n}{(a_n-1)^2}$. If $T_n$ is the sum of first $n$ terms in $\{b_n\}$, show that for any positive integer $n$, it always holds that $T_n < 3$.

Given a sequence $\{a_n\}$, if $a_n\ne 0$, $a_1=1$, and $3a_na_{n-1}+a_n+a_{n-1}=0$ for any $n\ge 2$, find the general term of $a_n$.

If a sequence $\{a_n\}$ satisfies $a_1=1$ and $a_{n+1}=\frac{1}{16}\big(1+4a_n+\sqrt{1+24a_n}\big)$, find the general term of $a_n$.

Show that $\frac{1}{1\times 2\times 3}+\frac{1}{2\times 3\times 4}+\cdots + \frac{1}{n\times (n+1)\times (n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$

The Fibonacci sequence $(F_n)$, $n\ge 0$ is defined by the recurrence relation $F_{n+2}=F_{n+1}+F_{n}$ with $F_0=0$ and $F_1=1$. Prove for any $m, n \in\mathbb{N}$, we have $$F_{m+n+1}=F_{m+1}{n+1}+F_mF_n$$ Deduce from here that $F_{2n+1}=F_{n+1}^2 +F_n^2$ for any $n\in\mathbb{N}$.

Solve the equation $$\sqrt{x+\sqrt{4x+\sqrt{16x+\sqrt{\cdots+\sqrt{4^{2008}x+3}}}}}-\sqrt{x}=1$$

Find all $x$ such that $\displaystyle\sum_{k=1}^{\infty}kx^k=20$.