Practice With Solutions

back to index  |  new

Find $8$ prime numbers, not necessarily distinct such that the sum of the squares of these numbers is $992$ less than $4$ times of the product of these numbers.

Pat is to select six cookies from a tray containing only chocolate chip, oatmeal, and peanut butter cookies. There are at least six of each of these three kinds of cookies on the tray. How many different assortments of six cookies can be selected?


Let $n$ be a $5$-digit number, and let $q$ and $r$ be the quotient and the remainder, respectively, when $n$ is divided by $100$. For how many values of $n$ is $q+r$ divisible by $11$?


Solve in positive integers the equation $3^x + 4^y = 5^z$ .

Solve in positive integers the equation $8^x + 15^y = 17^z$.


Find the number of ordered pairs of positive integer solutions $(m, n)$ to the equation $20m + 16n = 2016$


Find a polynomial with integral coefficients whose zeros include $\sqrt{2}+\sqrt{5}$.

Let $p(x)$ be a polynomial with integer coefficients. Assume that $p(a) = p(b) = p(c) = -1$, where $a, b, c$ are three different integers. Prove that $p(x)$ has no integral zeros.


Prove that the sum $$\sqrt{1001^2 + 1} + \sqrt{1002^2 + 1} + \cdots + \sqrt{2000^2 + 1}$$ is irrational.

The product of two of the four zeros of the quartic equation $$x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$$ is $-32$. Find $k$.

Let $n$ be an even positive integer, and let $p(x)$ be an $n$-degree polynomial such that $p(-k) = p(k)$ for $k = 1, 2, \dots , n$. Prove that there is a polynomial $q(x)$ such that $p(x) = q(x^2)$.


Let $P(x)$ be a polynomial with integer coefficients satisfying that both $P(0)$ and $P(1)$ are odd. Show that $P(x)$ has no integer zeros.

Let $a, b, c$ be distinct integers. Can the polynomial $(x - a)(x - b)(x - c) - 1$ be factored into the product of two polynomials with integer coefficients?


Let $p_1, p_2, \cdots, p_n$ be distinct integers and let $f(x)$ be the polynomial of degree $n$ given by $$f(x) = (x - p_1)(x - p_2)\cdots (x -p_n)$$ Prove that the polynomial $g(x) = (f(x))^2 + 1$ cannot be expressed as the product of two non-constant polynomials with integral coefficients.


Find the remainder when you divide $(x^{81} + x^{49} + x^{25} + x^9 + x)$ by $(x^3 - x)$.

Does there exist a polynomial $f(x)$ for which $xf(x - 1) = (x + 1)f(x)$

Is it possible to write the polynomial $f(x) = x^{105}-9$ as the product of two polynomials of degree less than 105 with integer coefficients?

Find all prime numbers $p$ that can be written $p = x^4 + 4y^4$, where $x, y$ are positive integers.

Is $4^{545} + 545^{4}$ a prime?

Prove that if $n>1$, then $(n^4 + 4^n)$ is a composite number.

Compute $$\frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}$$

Find the largest prime divisor of $25^2+72^2$

Calculate the value of $$\dfrac{2014^4+4 \times 2013^4}{2013^2+4027^2}-\dfrac{2012^4+4 \times 2013^4}{2013^2+4025^2}$$

Let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial with integral coefficients. Suppose that there exist four distinct integers $a, b, c, d$ with $P(a) = P(b) = P(c) = P(d) = 5$. Prove that there is no integer $k$ satisfying $P(k) = 8$.


Show that $(1 + x + \cdots + x^n)^2 - x^n$ is the product of two polynomials.