Pat is to select six cookies from a tray containing only chocolate chip, oatmeal, and peanut butter cookies. There are at least six of each of these three kinds of cookies on the tray. How many different assortments of six cookies can be selected?
Let $n$ be a $5$-digit number, and let $q$ and $r$ be the quotient and the remainder, respectively, when $n$ is divided by $100$. For how many values of $n$ is $q+r$ divisible by $11$?
Solve in positive integers the equation $8^x + 15^y = 17^z$.
Find the number of ordered pairs of positive integer solutions $(m, n)$ to the equation $20m + 16n = 2016$
Let $p(x)$ be a polynomial with integer coefficients. Assume that $p(a) = p(b) = p(c) = -1$, where $a, b, c$ are three different integers. Prove that $p(x)$ has no integral zeros.
Let $n$ be an even positive integer, and let $p(x)$ be an $n$-degree polynomial such that $p(-k) = p(k)$ for $k = 1, 2, \dots , n$. Prove that there is a polynomial $q(x)$ such that $p(x) = q(x^2)$.
Let $a, b, c$ be distinct integers. Can the polynomial $(x - a)(x - b)(x - c) - 1$ be factored into the product of two polynomials with integer coefficients?
Let $p_1, p_2, \cdots, p_n$ be distinct integers and let $f(x)$ be the polynomial of degree $n$ given by $$f(x) = (x - p_1)(x - p_2)\cdots (x -p_n)$$ Prove that the polynomial $g(x) = (f(x))^2 + 1$ cannot be expressed as the product of two non-constant polynomials with integral coefficients.
Let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial with integral coefficients. Suppose that there exist four distinct integers $a, b, c, d$ with $P(a) = P(b) = P(c) = P(d) = 5$. Prove that there is no integer $k$ satisfying $P(k) = 8$.