Practice (90/1000)

back to index  |  new

If $abc=1$, solve this equation $$\frac{2ax}{ab+a+1}+\frac{2bx}{bc+b+1}+\frac{2cx}{ca+c+1}=1$$

How many pairs of ordered real numbers $(x, y)$ are there such that $$ \left\{ \begin{array}{ccl} \mid x\mid + y &=& 12\\ x + \mid y \mid &=&6 \end{array} \right. $$

Let $a$, $b$, and $c$ be three distinct numbers such that $$\frac{a+b}{a-b}=\frac{b+c}{2(b-c)}=\frac{c+a}{3(c-a)}$$ Prove that $8a + 9b + 5c = 0$.

Solve this equation in real numbers: $$\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\times(x+y+z)$$

Let $a$, $b$, and $c$ be the lengths of $\triangle{ABC}$'s three sides. Compute the area of $\triangle{ABC}$ if the following relations hold: $$\frac{2a^2}{1+a^2}=b,\qquad \frac{2b^2}{1+b^2}=c,\qquad \frac{2c^2}{1+c^2}=a$$

Let real numbers $x$, $y$, and $z$ satisfy $0 < x, y, z < 1$. Prove $$x(1-y)+y(1-z)+z(1-x)< 1$$

Show that $$\frac{(x+a)(x+b)}{(c-a)(c-b)}+\frac{(x+b)(x+c)}{(a-b)(a-c)}+\frac{(x+c)(x+a)}{(b-c)(b-a)}=1$$ without expanding the left side of the equation.

Find the range of function $f(x)=3^{-|\log_2x|}-4|x-1|$.

If sequence $\{a_n\}$ has no zero term and satisfies that, for any $n\in\mathbb{N}$, $$(a_1+a_2+\cdots+a_n)^2=a_1^3+a_2^3+\cdots+a_n^3$$ - Find all qualifying sequences $\{a_1, a_2, a_3\}$ when $n=3$. - Is there an infinite sequence $\{a_n\}$ such that $a_{2013}=-2012$? If yes, give its general formula of $a_n$. If not, explain.

Find the minimal value of $y=\sqrt{x^2+2x+5}+\sqrt{x^2-4x+5}$.

Alice refuses to sit next to either Bob or Carla. Derek refuses to sit next to Eric. How many ways are there for the five of them to sit in a row of $5$ chairs under these conditions?

Sides $\overline{AB}$ and $\overline{AC}$ of equilateral triangle $ABC$ are tangent to a circle at points $B$ and $C$ respectively. What fraction of the area of $\triangle ABC$ lies outside the circle?

How many triangles with positive area have all their vertices at points $(i,j)$ in the coordinate plane, where $i$ and $j$ are integers between $1$ and $5$, inclusive?

How many integers between $100$ and $999$, inclusive, have the property that some permutation of its digits is a multiple of $11$ between $100$ and $999?$ For example, both $121$ and $211$ have this property.

Let $f(x) = \sin{x} + 2\cos{x} + 3\tan{x}$, using radian measure for the variable $x$. In what interval does the smallest positive value of $x$ for which $f(x) = 0$ lie?

There are $24$ different complex numbers $z$ such that $z^{24}=1$. For how many of these is $z^6$ a real number?

Let $S(n)$ equal the sum of the digits of positive integer $n$. For example, $S(1507) = 13$. For a particular positive integer $n$, $S(n) = 1274$. Which of the following could be the value of $S(n+1)$?

A square with side length $x$ is inscribed in a right triangle with sides of length $3$, $4$, and $5$ so that one vertex of the square coincides with the right-angle vertex of the triangle. A square with side length $y$ is inscribed in another right triangle with sides of length $3$, $4$, and $5$ so that one side of the square lies on the hypotenuse of the triangle. What is $\tfrac{x}{y}$?

For certain real numbers $a$, $b$, and $c$, the polynomial \[g(x) = x^3 + ax^2 + x + 10\]has three distinct roots, and each root of $g(x)$ is also a root of the polynomial \[f(x) = x^4 + x^3 + bx^2 + 100x + c.\]What is $f(1)$?

Quadrilateral $ABCD$ is inscribed in circle $O$ and has side lengths $AB=3, BC=2, CD=6$, and $DA=8$. Let $X$ and $Y$ be points on $\overline{BD}$ such that $\frac{DX}{BD} = \frac{1}{4}$ and $\frac{BY}{BD} = \frac{11}{36}$. Let $E$ be the intersection of line $AX$ and the line through $Y$ parallel to $\overline{AD}$. Let $F$ be the intersection of line $CX$ and the line through $E$ parallel to $\overline{AC}$. Let $G$ be the point on circle $O$ other than $C$ that lies on line $CX$. What is $XF\cdot XG$?

If $17!=355687ab8096000$ where $a$ and $b$ are two missing single digits. Find $a$ and $b$.

We define the Fibonaccie numbers by $F_0=0$, $F_1=1$, and $F_n=F_{n-1}+F_{n}$. Find the greatest common divisor $(F_{100}, F_{99})$, and $(F_{100}, F_{96})$.

Show that neither $385^{97}$ nor $366^{17}$ can be expressed as the sum of cubes of some consecutive integers.

An integer $N$ is selected at random in the range $1\leq N \leq 2020$. What is the probability that the remainder when $N^{16}$ is divided by $5$ is $1$?

Last year Isabella took $7$ math tests and received $7$ different scores, each an integer between $91$ and $100$, inclusive. After each test she noticed that the average of her test scores was an integer. Her score on the seventh test was $95$. What was her score on the sixth test?