Practice (68)

back to index  |  new

Find the number of possible arrangements in Fisher Random Chess. The diagram below is one possible arrangement.

In a legal arrangement, the White's position must satisfy the following criteria:

  • Eight pawns must be in the $2^{nd}$ row. (The same as regular chess)
  • Two bishops must be in opposite colored squares (e.g. $b1$ and $e1$ in the above diagram)
  •  King must locate between two rooks (e.g. in the diagram above, King is at $c1$ and two rooks are at $a1$ and $g1$)

The Black's position will be mirroring to the White's.


Show that $\frac{1}{k+1}\binom{n}{k}=\frac{1}{n+1}\binom{n+1}{k+1}$.

Show that $\binom{n}{0}+\binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$.

For $m=4k+1$ where $k$ is a positive integer. Show that $$\frac{1}{\sqrt{m}}\Big(\Big(\frac{1+\sqrt{m}}{2}\Big)^n-\Big(\frac{1-\sqrt{m}}{2}\Big)^n\Big)$$ must be an integer for any positive integer $n$.

(Pascal Identity) Show $\binom{n}{k} + \binom{n}{k+1}=\binom{n+1}{k+1}$.

$n$ straight lines are drawn on a plane such in such a way that no two of them are parallel and no three of them meet at one point. Show that the number of regions in which these lines divide the plane is $\frac{(n)(n+1)}{2}+1$.

Find the value of the following expression: $$\binom{2020}{0}-\binom{2020}{2}+\binom{2020}{4}-\cdots+\binom{2020}{2020}$$

Let $(x^{2017}+x^{2019}+2)^{2018} = a_0+a_1x+\cdots+a_nx^n$. Find $$a_0-\frac{a_1}{2}-\frac{a_2}{2}+a_3-\frac{a_4}{2}-\frac{a_5}{2}+a_6-\cdots$$

Show that $$\sum_{i=0}^n \binom{n}{i}^2 = \binom{2n}{n}$$.

Given $$P(x)=(1+x+x^2)^{100}=a_0+a_1x+\cdots+a_{200}x^{200}$$

Compute the following sums:

  • $S_1=a_0+a_1+a_2+a_3 +\cdots+a_{200}$
  • $S_2=a_0+a_2+a_4+a_6 +\cdots+a_{200}$.

How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?


Let $S$ be the number of ordered pairs of integers $(a,b)$ with $1 \leq a \leq 100$ and $b \geq 0$ such that the polynomial $x^2+ax+b$ can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find $S$.


Kathy has $5$ red cards and $5$ green cards. She shuffles the $10$ cards and lays out $5$ of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders $RRGGG$, $GGGGR$, or $RRRRR$ will make Kathy happy, but $RRRGR$ will not. Find the probability that Kathy will be happy.


Find the number of four-element subsets of $\{1,2,3,4,\dots, 20\}$ with the property that two distinct elements of a subset have a sum of $16$, and two distinct elements of a subset have a sum of $24$. For example, $\{3,5,13,19\}$ and $\{6,10,20,18\}$ are two such subsets.


The wheel shown below consists of two circles and five spokes, with a label at each point where a spoke meets a circle. A bug walks along the wheel, starting at point $A$. At every step of the process, the bug walks from one labeled point to an adjacent labeled point. Along the inner circle the bug only walks in a counterclockwise direction, and along the outer circle the bug only walks in a clockwise direction. For example, the bug could travel along the path $AJABCHCHIJA$, which has $10$ steps. Let $n$ be the number of paths with $15$ steps that begin and end at point $A$. Find $n$.




For every subset $T$ of $U = \{ 1,2,3,\ldots,18 \}$, let $s(T)$ be the sum of the elements of $T$, with $s(\emptyset)$ defined to be $0$. If $T$ is chosen at random among all subsets of $U$, the probability that $s(T)$ is divisible by $3$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.


Let $SP_1P_2P_3EP_4P_5$ be a heptagon. A frog starts jumping at vertex $S$. From any vertex of the heptagon except $E$, the frog may jump to either of the two adjacent vertices. When it reaches vertex $E$, the frog stops and stays there. Find the number of distinct sequences of jumps of no more than $12$ jumps that end at $E$.


A frog is positioned at the origin of the coordinate plane. From the point $(x, y)$, the frog can jump to any of the points $(x + 1, y)$, $(x + 2, y)$, $(x, y + 1)$, or $(x, y + 2)$. Find the number of distinct sequences of jumps in which the frog begins at $(0, 0)$ and ends at $(4, 4)$.


Find the number of functions $f(x)$ from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$ that satisfy $f(f(x)) = f(f(f(x)))$ for all $x$ in $\{1, 2, 3, 4, 5\}$.


Find the number of permutations of $1, 2, 3, 4, 5, 6$ such that for each $k$ with $1$ $\leq$ $k$ $\leq$ $5$, at least one of the first $k$ terms of the permutation is greater than $k$.


Misha rolls a standard, fair six-sided die until she rolls $1-2-3$ in that order on three consecutive rolls. Find the probability that she will roll the die an odd number of times.


Compute: $1\times 2\times 3 + 2\times 3\times 4 + \cdots + 18\times 19\times 20$.


Find the number of non-negative integer solutions to the following equation: $$x_1+x_2+\cdots+x_5=14$$


Find the number of integer solutions to the following equation: $$x_1+x_2+\cdots+x_6=12$$

where $x_1, x_5\ge 0$ and $x_2, x_3, x_4 > 0$


(Hockey Sticker Identity) Show that for any positive integer $n \ge k$, the following relationship holds: $$\binom{k}{k} +\binom{k+1}{k} + \binom{k+2}{k} + \cdots + \binom{n}{k} = \binom{n+1}{k+1} $$