Practice (90/1000)

back to index  |  new

Solve $x^2 - x -1=0$.


Solve $x^4-x^2-1=0$.


Let $r$ and $s$ be integers. Find the condition such that the expression $\frac{6^{r+s}\times 12^{r-s}}{8^r\times 9^{r+2s}}$ is an integer.


Find the number of solutions to the equation $7\sin x + 2\cos^2 x = 5$ for $0\le x < 2\pi$.


Find the number of real number solutions to the equation: $8^x +4=4^x + 2^{x+2}$.


Let function $f(x)$ satisfy:  $$\int^1_0 3f (x) dx +\int^2_1 2f (x) dx = 7$$

and $$\int^2_0 f (x) dx + \int^2_1 f (x) dx = 1$$

Find the value of $$\int^2_0 f (x) dx$$


Let $f_n (x) = (2 + (−2)^n ) x^2 + (n + 3) x + n^2$.

  1. Write down $f_3(x)$ and find its maximum value. Also determine for what value of $n$ does the function $f_n(x)$ have a maximum value (as $x$ varies). You do not need to compute this maximum value.
  2. Write down $f_1(x)$. Calculate $f_1(f_1(x))$ and $f_1(f_1(f_1(x)))$. Find an expression, simplified as much as possible, for $$\underbrace{f_1(f_1(\cdots f_1(x)))}_{k}$$
  3. Write down $f_2(x)$. Find the degree of the function $$\underbrace{f_2(f_2(\cdots f_2(x)))}_{k}$$

Let $f(c)=\int_0^1\left( (x-c)^2 + c^2\right)dx$ where $c$ is a real number. Find the minimal value of $f(c)$ as $c$ varies and the maximum value of $f(\sin\theta)$ as $\theta$ varies.


In the diagram below, a line is tangent to a unit circle centered at $Q (1, 1)$ and intersects the two axes at $P$ and $R$, respectively. The angle $\angle{OPR}=\theta$. The area bounded by the circle and the $x-$axis is $A(\theta)$ and the are bounded by the circle and the $y-$axis is $B(\theta)$.

  1. Show the coordinates of the point $Q$ is $(1+\sin\theta, 1+\cos\theta)$. Find the equation of line $PQR$ and determine the coordinates of $P$.
  2. Explain why $A(\theta)=B\left(\frac{\pi}{2}-\theta\right)$ always holds and calculates $A\left(\frac{\pi}{2}\right)$.
  3. Show that $A\left(\frac{\pi}{3}\right)=\sqrt{3}-\frac{\pi}{3}$.




Find the area of the region bounded by the curve $y=\sqrt{x}$, the line line $y=x-2$, and the $x-$ axis.


Find the number of $k$ such that the function $y=e^{kx}$ satisfies the equation $$\left(\frac{d^2y}{dx^2}+\frac{dy}{dx}\right)\left(\frac{dy}{dx}-y\right)=y\frac{dy}{dx}$$


Let $a$, $b$, $c$ and $d$ be real numbers. Find the relation of these four numbers such that the two curves $y=ax^2+c$ and $y=bx^2 + d$ have exactly two points of intersections.

A circle of radius $2$, center on the origin, is drawn on a grid of points with integer coordinates. Let $n$ be the grid points that lie within or on the circle. What is the smallest amount of radius needs to increase by for there to be $(2n-5)$ grid points within or on the circle?


A particle moves in the $xy$-plane, starting at the origin $(0, 0)$. At each turn, the particle may move in one of the two ways:

  • it may move two to the right and one up
  • it may move one to the right and two up

What is the closet distance the particle may come to the point $(25, 75)$?


Find the value of $c$ such that two parabolas $y=x^2+c$ and $y^2=x$ touch at a single point.


Explain why we cannot apply the cut-the-rope technique to count the non-negative integer solutions to the equation $$x_1 + x_2 + \cdots + x_k = n$$

For example, can we allow two cuts in the same interval thus to model one of the $x_i$ is zero?


Let $n \ge k$ are two positive integers. Given function $x_1+x_2+\cdots + x_k =n$,

  1. Find the number of positive integer solutions to this equation.
  2. Find the number of non-negative integer solutions to this equation.
  3. Explain the relation between these two cases. i.e. is it possible to derive (2) from (1), and vice versa?

Explain why the count of positive / non-negative integer solutions to the equation $x_1 + x_2 + \cdots + x_k=n$ is equivalent to the case of putting $n$ indistinguishable balls into $k$ distinguishable boxes.


Randomly draw a card twice with replacement from $1$ to $10$, inclusive. What is the probability that the product of these two cards is a multiple of $7$?


How many even $4$- digit integers are there whose digits are distinct?


Derive the permutation formula $P_n^n=n\times (n-1)\times\cdots\times 2\times 1$ using the recursion method.


Find all the real values of $x$ that satistify: $$\sqrt{3x^2 + 1} + \sqrt{x} - 2x - 1=0$$


Find all the real values of $x$ that satistify: $$\sqrt{3x^2 + 1} - 2\sqrt{x} + x - 1=0$$


Find all the real values of $x$ that satistify: $$\sqrt{3x^2 + 1} - 2\sqrt{x} - x + 1=0$$


Prove that, if $|\alpha| < 2\sqrt{2}$, then there is no value of $x$ for which $$x^2-\alpha|x| + 2 < 0\qquad\qquad(*)$$

Find the solution set of (*)  for $\alpha=3$.

For $\alpha > 2\sqrt{2}$, then the sum of the lengths of the intervals in which $x$ satisfies (*) is denoted by $S$. Find $S$ in terns of $\alpha$ and deduce that $S < 2\alpha$.