Practice (Category=AdditionPrinciple(70);Category=MultiplicationPrinciple(71);Category=ManualCountingAndCasework(165))

back to index  |  new

A set of $25$ square blocks is arranged into a $5 \times 5$ square. How many different combinations of $3$ blocks can be selected from that set so that no two are in the same row or column?

All of David's telephone numbers have the form $555 - abc - defg$, where $a$, $b$, $c$, $d$, $e$, $f$, and $g$ are distinct digits and in increasing order, and none is either $0$ or $1$. How many different telephone numbers can David have?

How many ways can all six numbers in the set $\{4, 3, 2, 12, 1, 6\}$ be ordered so that $a$ comes before $b$ whenever $a$ is a divisor of $b$?


How many collections of six positive, odd integers have a sum of $18$? Note that $1 + 1 + 1 + 3 + 3 + 9$ and $9 + 1 + 3 + 1 + 3 + 1$ are considered to be the same collection.


Four boys and four girls line up in a random order. What is the probability that both the first and last person in line is a girl?

Let $S$ be the string $0101010101010$. Determine the number of substrings containing an odd number of $1$'s. (A substring is defined by a pair of (not necessarily distinct) characters of the string and represents the characters between, inclusively, the two elements of the string.)

A hand of four cards of the form $(c, c, c + 1, c + 1)$ is called a $tractor$. Vinjai has a deck consisting of four of each of the numbers $7$, $8$, $9$ and $10$. If Vinjai shuffles and draws four cards from his deck, compute the probability that they form a tractor.

A code consists of four different digits from $1$ to $9$, inclusive. What is the probability of selection a code that consists of four consecutive digits but not necessarily in order? Express your answer as a common fraction.


Restaurant MAS offers a set menu with $3$ choices of appetizers, $5$ choices of main dishes, and $2$ choices of desserts. How many possible combinations can a customer have for one appetizer, one main dish, and one dessert?


Eight chairs are arranged in two equal rows for a group of $8$. Joe and Mary must sit in the front row. Jack must sit in the back row. How many different seating plans can they have?


Two Britons, three Americans, and six Chinese form a line:

  • How many different ways can the $11$ individuals line up?
  • If two people of the same nationality cannot stand next to each other, how many different ways can the $11$ individuals line up?

Use digits $1$, $2$, $3$, $4$, and $5$ without repeating to create a number.

  1. How many 5-digit numbers can be formed?
  2. How many numbers will have the two even digits appearing between $1$ and $5$? (e.g.12345)

Joe plans to put a red stone, a blue stone, and a black stone on a $10 \times 10$ grid. The red stone and the blue stone cannot be in the same column. The blue stone and the black stone cannot be in the same row. How many different ways can Joe arrange these three stones?

How many positive divisors does $20$ have?


There are $2$ white balls, $3$ red balls, and $1$ yellow balls in a jar. How many different ways are there to retrieve $3$ balls to form a line?

How many integers between $1000$ and $9999$ have four distinct digits?


How many pairs of parallel edges, such as $\overline{AB}$ and $\overline{GH}$ or $\overline{EH}$ and $\overline{FG}$, does a cube have?

A word is an ordered, non-empty sequence of letters, such as word or wrod. How many distinct words can be made from a subset of the letters $\textit{c, o, m, b, o}$, where each letter in the list is used no more than the number of times it appears?

How many positive integers greater than $9$ are there such that every digit is less that the digit on its right?

How many fraction numbers between $0$ and $1$ are there whose denominator is $1001$ when written in its simplest form?


After having taken the same exam, Joe found he answered 1/3 of total problems incorrectly. Mary answered 6 incorrectly. The problems both didn't get right accounts for 1/5 of the total. Can you find how many problems did they both get right?

Tina randomly selects two distinct numbers from the set $\{ 1, 2, 3, 4, 5 \}$, and Sergio randomly selects a number from the set $\{ 1, 2, ..., 10 \}$. What is the probability that Sergio's number is larger than the sum of the two numbers chosen by Tina?

Let $N$ be a positive multiple of $5$. One red ball and $N$ green balls are arranged in a line in random order. Let $P(N)$ be the probability that at least $\tfrac{3}{5}$ of the green balls are on the same side of the red ball. Observe that $P(5)=1$ and that $P(N)$ approaches $\tfrac{4}{5}$ as $N$ grows large. What is the sum of the digits of the least value of $N$ such that $P(N) < \tfrac{321}{400}$?

A regular icosahedron is a $20$-faced solid where each face is an equilateral triangle and five triangles meet at every vertex. The regular icosahedron shown below has one vertex at the top, one vertex at the bottom, an upper pentagon of five vertices all adjacent to the top vertex and all in the same horizontal plane, and a lower pentagon of five vertices all adjacent to the bottom vertex and all in another horizontal plane. Find the number of paths from the top vertex to the bottom vertex such that each part of a path goes downward or horizontally along an edge of the icosahedron, and no vertex is repeated.

How many rectangles of any size are in the grid shown here?