Practice (Intermediate)

back to index  |  new

In tetrahedron $ABCD$, $\angle{ADB} = \angle{BDC} = \angle{CDA} = 60^\circ$, $AD=BD=3$, and $CD=2$. Find the radius of $ABCD$'s circumsphere.


In tetrahedron $P-ABC$, $AB=BC=CA$ and $PA=PB=PC$. If $AB=1$ and the altitude from $P$ to $ABC$ is $\sqrt{2}$, find the radius of $P-ABC$'s inscribed sphere.

Let $AB=2$ is a diameter of circle $O$. If $AC=AO$, $AC\perp AB$, $BD=\frac{3}{2}\cdot AB$, $BD\perp AB$ and $P$ is a point on arc $AB$. Find the largest possible area of the enclosed polygon $ABDPC$.


Show that $\sin{x}+2\sin{2x}+\cdots + n\sin{nx}=\frac{(n+1)\sin{nx} - n\sin{(n+1)x}}{2(1-\cos{x})}$

Evaluate $\cos\frac{2\pi}{2n+1}+\cos\frac{4\pi}{2n+1}+\cdots+\cos\frac{2n\pi}{2n+1}$.

Show that \begin{align*} C_n^0-C_n^2+C_n^4-C_n^6+\cdots &=2^{\frac{n}{2}}\cos\frac{n\pi}{4}\\ C_n^1-C_n^3+C_n^5-C_n^7+\cdots &=2^{\frac{n}{2}}\sin\frac{n\pi}{4} \end{align*}

John walks from point $A$ to $C$ while Mary goes from point $B$ to $D$. Both of them will move along the grid, either right or up, so they take shortest routes. How many different possibilities are there such that their routes do not intersect?


Let the sum of first $n$ terms of arithmetic sequence $\{a_n\}$ be $S_n$, and the sum of first $n$ terms of arithmetic sequence $\{b_n\}$ be $T_n$. If $\frac{S_n}{T_n}=\frac{2n}{3n+7}$, compute the value of $\frac{a_8}{b_6}$.

Let sequence $\{a_n\}$ satisfy $a_1=2$ and $a_{n+1}=\frac{2(n+2)}{n+1}a_n$ where $n\in \mathbb{Z}^+$. Compute the value of $$\frac{a_{2014}}{a_1+a_2+\cdots+a_{2013}}$$

Let $S_n$ be the sum of first $n$ terms in sequence $\{a_n\}$ where $$a_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}$$ Find $\lfloor{S_n}\rfloor$ where the floor function $\lfloor{x}\rfloor$ returns the largest integer not exceeding $x$.

Given a sequence $\{a_n\}$, if $a_n\ne 0$, $a_1=1$, and $3a_na_{n-1}+a_n+a_{n-1}=0$ for any $n\ge 2$, find the general term of $a_n$.

Assuming a small packet of mm’s can contain anywhere from $20$ to $40$ mm’s in $6$ different colours. How many different mm packets are possible?


Show that $$\sum_{k=1}^n \binom{n}{k}\binom{n}{k-1}=\binom{2n}{n-1}$$

Show that $|\sin(nx)|\le n|\sin(x)|$ for any positive integer $n$.

Solve the equation $x^4 -97x^3+2012x^2-97x+1=0$.


Show that if $a, b, c$ are the lengths of the sides of a triangle, then the equation $$b^2x^2 +(b^2+c^2-a^2)x+c^2=0$$ does not have real roots.

Solve the equation in real numbers $$\frac{2x}{2x^2-5x+3}+\frac{13x}{2x^2+x+3}=6$$

If the product of two roots of polynomial $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$ is $- 32$. Find the value of $k$.

If $a>1$, then $$\frac{1}{a-1}+\frac{1}{a} + \frac{1}{a+1} > \frac{3}{a}$$ holds.

Let $a, b, c$ be positive numbers such that $a+b+c=1$. Prove $$\Big(1+\frac{1}{a}\Big)\Big(1+\frac{1}{b}\Big)\Big(1+\frac{1}{c}\Big)\ge 64$$

Let $a, b, c$ be positive numbers lying in the interval $(0, 1]$. Show that $$\frac{a}{1+b+ca}+\frac{b}{1+c+ab}+\frac{c}{1+a+bc}\le 1$$

Let $x, y, z$ be strictly positive real numbers. Prove that $$\Big(\frac{x}{y}+\frac{z}{\sqrt[3]{xyz}}\Big)^2+\Big(\frac{y}{z}+\frac{x}{\sqrt[3]{xyz}}\Big)^2+\Big(\frac{z}{x}+\frac{y}{\sqrt[3]{xyz}}\Big)^2 \ge 12$$

Evaluate $\sqrt{5+\sqrt{5^2+\sqrt{5^4+\sqrt{5^8+...}}}}$

Simplify $$2^{\sqrt{2^{\sqrt{2^{\sqrt{2}^{\cdots}}}}}}$$

Use at least two ways to prove $$\sqrt{x\sqrt{x\sqrt{x\sqrt{\cdots}}}}=x$$