A cube with side length 10 is suspended above a plane. The vertex closest to the plane is labeled $A$. The three vertices adjacent to vertex $A$ are at heights 10, 11, and 12 above the plane. The distance from vertex $A$ to the plane can be expressed as $\frac{r-\sqrt{s}}{t}$, where $r$, $s$, and $t$ are positive integers, and $r+s+t<{1000}$. Find $r+s+t$.
Let $A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8$ be a regular octagon. Let $M_1$, $M_3$, $M_5$, and $M_7$ be the midpoints of sides $\overline{A_1 A_2}$, $\overline{A_3 A_4}$, $\overline{A_5 A_6}$, and $\overline{A_7 A_8}$, respectively. For $i = 1, 3, 5, 7$, ray $R_i$ is constructed from $M_i$ towards the interior of the octagon such that $R_1 \perp R_3$, $R_3 \perp R_5$, $R_5 \perp R_7$, and $R_7 \perp R_1$. Pairs of rays $R_1$ and $R_3$, $R_3$ and $R_5$, $R_5$ and $R_7$, and $R_7$ and $R_1$ meet at $B_1$, $B_3$, $B_5$, $B_7$ respectively. If $B_1 B_3 = A_1 A_2$, then $\cos 2 \angle A_3 M_3 B_1$ can be written in the form $m - \sqrt{n}$, where $m$ and $n$ are positive integers. Find $m + n$.
For some integer $m$, the polynomial $x^3 - 2011x + m$ has the three integer roots $a$, $b$, and $c$. Find $|a| + |b| + |c|$.
On square $ABCD$, point $E$ lies on side $AD$ and point $F$ lies on side $BC$, so that $BE=EF=FD=30$. Find the area of the square $ABCD$.
The degree measures of the angles in a convex 18-sided polygon form an increasing arithmetic sequence with integer values. Find the degree measure of the smallest angle.
In triangle $ABC$, $AB=\frac{20}{11} AC$. The angle bisector of $\angle A$ intersects $BC$ at point $D$, and point $M$ is the midpoint of $AD$. Let $P$ be the point of the intersection of $AC$ and $BM$. The ratio of $CP$ to $PA$ can be expressed in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
The sum of the first 2011 terms of a geometric sequence is 200. The sum of the first 4022 terms is 380. Find the sum of the first 6033 terms.
Define an ordered quadruple of integers $(a, b, c, d)$ as interesting if $1 \le a < b < c < d \le 10$, and $a+d>b+c$. How many interesting ordered quadruples are there?
Ed has five identical green marbles, and a large supply of identical red marbles. He arranges the green marbles and some of the red ones in a row and finds that the number of marbles whose right hand neighbor is the same color as themselves is equal to the number of marbles whose right hand neighbor is the other color. An example of such an arrangement is GGRRRGGRG. Let $m$ be the maximum number of red marbles for which such an arrangement is possible, and let $N$ be the number of ways he can arrange the $m+5$ marbles to satisfy the requirement. Find the remainder when $N$ is divided by $1000$.
Let $z_1$, $z_2$, $z_3$, $\dots$, $z_{12}$ be the 12 zeroes of the polynomial $z^{12} - 2^{36}$. For each $j$, let $w_j$ be one of $z_j$ or $iz_j$. Then the maximum possible value of the real part of $\displaystyle\sum_{j = 1}^{12} w_j$ can be written as $m + \sqrt{n}$, where $m$ and $n$ are positive integers. Find $m + n$.
Let $x_1, x_2, ... , x_6$ be non-negative real numbers such that $x_1 +x_2 +x_3 +x_4 +x_5 +x_6 =1$, and $x_1 x_3 x_5 +x_2 x_4 x_6 \ge {\scriptstyle\frac{1}{540}}$. Let $p$ and $q$ be positive relatively prime integers such that $\frac{p}{q}$ is the maximum possible value of $x_1 x_2 x_3 + x_2 x_3 x_4 +x_3 x_4 x_5 +x_4 x_5 x_6 +x_5 x_6 x_1 +x_6 x_1 x_2$. Find $p+q$.
A circle with center $O$ has radius 25. Chord $\overline{AB}$ of length 30 and chord $\overline{CD}$ of length 14 intersect at point $P$. The distance between the midpoints of the two chords is 12. The quantity $OP^2$ can be represented as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find the remainder when $m + n$ is divided by 1000.
Nine delegates, three each from three different countries, randomly select chairs at a round table that seats nine people. Find the probability that each delegate sits next to at least one delegate from another country.
Point $P$ lies on the diagonal $AC$ of square $ABCD$ with $AP > CP$. Let $O_{1}$ and $O_{2}$ be the circumcenters of triangles $ABP$ and $CDP$ respectively. Given that $AB = 12$ and $\angle O_{1}PO_{2} = 120^{\circ}$, then $AP = \sqrt{a} + \sqrt{b}$, where $a$ and $b$ are positive integers. Find $a + b$.
There are $N$ permutations $(a_{1}, a_{2}, ... , a_{30})$ of $1, 2, \ldots, 30$ such that for $m \in \left\{{2, 3, 5}\right\}$, $m$ divides $(a_{n+m} - a_{n})$ for all integers $n$ with $1 \leq n < n+m \leq 30$. Find $N$.
Let $P(x) = x^2 - 3x - 9$. A real number $x$ is chosen at random from the interval $5 \le x \le 15$. The probability that $\lfloor\sqrt{P(x)}\rfloor = \sqrt{P(\lfloor x \rfloor)}$ is equal to $\frac{\sqrt{a} + \sqrt{b} + \sqrt{c} - d}{e}$ , where $a$, $b$, $c$, $d$, and $e$ are positive integers. Find $a + b + c + d + e$.
A perfect power is a number that can be written as a positive integer raised to an integer power greater than $1$. For example, $125$ is a perfect power because it is equal $5^3$. The list $2$, $3$, $5$, $6$, $7$, $10$, $11$, $12$, $13$, $14$, $15$, $17$, $\cdots$ contains every positive integer less than $1000$ that is not a perfect power. How many integer are in the list?
In the diagram, $AB$ is the diameter of the semicircle, $\angle{CAB} = 45^\circ$, $E$ is the midpoint of $AC$, and $DE \parallel AB$. Find $\angle{ACD}$ in degrees.

What is the last digit of $9^{2019}$?
What are the last two digits of $8^{88}$?
Find the remainder when $3^{2019} + 4^{2019}$ is divided by 5?
Joe uses 9 different digits out of 0 to 9 to create a 2-digit number, a 3-digit number, and a 4-digit number. He \ffinds the sum of these three numbers is 2014. Do you know which digit is not used?
Find the coefficient of $x^{17}$ in the expansion of $(1+x^5 + x^7)^{20}$.
Solve in integer: $36((xy+1)z+x)=475(yz+1)$
Maya lists all the positive divisors of $2010^2$. She then randomly selects two distinct divisors from this list. Let $p$ be the probability that exactly one of the selected divisors is a perfect square. The probability $p$ can be expressed in the form $\frac {m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.