Practice With Solutions

back to index  |  new

123
Find all positive integer $n$ such that $2^n+1$ is divisible by 3.

125

Show that $2x^2 - 5y^2 = 7$ has no integer solution.


155
How many ordered pairs of positive integers $(x, y)$ can satisfy the equation $x^2 + y^2 = x^3$?

156
Solve in positive integers $x^2 - 4xy + 5y^2 = 169$.

157
Let $b$ and $c$ be two positive integers, and $a$ be a prime number. If $a^2 + b^2 = c^2$, prove $a < b$ and $b+1=c$.

159
Solve in integers the equation $2(x+y)=xy+7$.

160
Solve in integers the question $x+y=x^2 -xy + y^2$.

161
Find the ordered pair of positive integers $(x, y)$ with the largest possible $y$ such that $\frac{1}{x} - \frac{1}{y}=\frac{1}{12}$ holds.

164
Find any positive integer solution to $x^2 - 51y^2 = 1$.

166
Find all ordered pairs of integers $(x, y)$ that satisfy the equation $$\sqrt{y-\frac{1}{5}} + \sqrt{x-\frac{1}{5}} = \sqrt{5}$$

167
What is the remainder when $\left(8888^{2222} + 7777^{3333}\right)$ is divided by $37$?

168

Solve in integers $\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}$


171
Let positive integer $d$ is a divisor of $2n^2$, where $n$ is also a positive integer. Prove $(n^2 + d)$ cannot be a perfect square.

172
Prove the product of $4$ consecutive positive integers is a perfect square minus $1$.

173
For any arithmetic sequence whose terms are all positive integers, show that if one term is a perfect square, this sequence must have infinite number of terms which are perfect squares.

174

Find all prime number $p$ such that both $(4p^2+1)$ and $(6p^2+1)$ are prime numbers.


175
Prove there exist infinite number of positive integer $a$ such that for any positive integer $n$, $n^4 + a$ is not a prime number.

177
Find that largest integer $A$ that satisfies the following property: in any permutation of the sequence $1001$, $1002$, $1003$, $\cdots$, $2000$, it is always possible to find $10$ consecutive terms whose sum is no less than $A$.

178
Find all positive integer $n$ such that $(3^{2n+1} -2^{2n+1}- 6^n)$ is a composite number.

179
Find $n$ different positive integers such that any two of them are relatively prime, but the sum of any $k$ ($k < n$) of them is a composite number.

181

Find the number of five-digit positive integers, $n$, that satisfy the following conditions:

  • the number $n$ is divisible by $5$,
  • the first and last digits of $n$ are equal, and
  • the sum of the digits of $n$ is divisible by $5$.

185
Melinda has three empty boxes and $12$ textbooks, three of which are mathematics textbooks. One box will hold any three of her textbooks, one will hold any four of her textbooks, and one will hold any five of her textbooks. If Melinda packs her textbooks into these boxes in random order, find the probability that all three mathematics textbooks end up in the same box.

190

Ms. Math's kindergarten class has $16$ registered students. The classroom has a very large number, $N$, of play blocks which satisfies the conditions:

  • If $16$, $15$, or $14$ students are present in the class, then in each case all the blocks can be distributed in equal numbers to each student, and
  • There are three integers $0 < x < y < z < 14$ such that when $x$, $y$, or $z$ students are present and the blocks are distributed in equal numbers to each student, there are exactly three blocks left over.

Find the sum of the distinct prime divisors of the least possible value of $N$ satisfying the above conditions.


193

For $\pi \le \theta < 2\pi$, let\begin{align*} P &= \frac12\cos\theta - \frac14\sin 2\theta - \frac18\cos 3\theta + \frac{1}{16}\sin 4\theta + \frac{1}{32} \cos 5\theta - \frac{1}{64} \sin 6\theta - \frac{1}{128} \cos 7\theta + \cdots \end{align*} and \begin{align*} Q &= 1 - \frac12\sin\theta -\frac14\cos 2\theta + \frac18 \sin 3\theta + \frac{1}{16}\cos 4\theta - \frac{1}{32}\sin 5\theta - \frac{1}{64}\cos 6\theta +\frac{1}{128}\sin 7\theta + \cdots \end{align*} so that $\frac{P}{Q} = \frac{2\sqrt2}{7}$. Then $\sin\theta = -\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.


203

A $7\times 1$ board is completely covered by $m\times 1$ tiles without overlap; each tile may cover any number of consecutive squares, and each tile lies completely on the board. Each tile is either red, blue, or green. Let $N$ be the number of tilings of the $7\times 1$ board in which all three colors are used at least once. For example, a $1\times 1$ red tile followed by a $2\times 1$ green tile, a $1\times 1$ green tile, a $2\times 1$ blue tile, and a $1\times 1$ green tile is a valid tiling. Note that if the $2\times 1$ blue tile is replaced by two $1\times 1$ blue tiles, this results in a different tiling. Find $N$.