Practice With Solutions

back to index  |  new

Compute the value of $\sin{18^\circ}$ using regular geometry.

Suppose the point $F$ is inside a square $ABCD$ such that $BF=1$, $FA=2$, and $FD=3$, as shown. Find the measurement of $\angle{BFA}$.


Solve this equation in positive integers $$x^3 - y^3 = xy + 61$$

Solve in integers the equation $$(x+y)^2 = x^3 + y^3$$


Let $k$ be a positive integer, show that $(4k+3)$ cannot be a square number.

How many numbers in this series are squares? $$1, 14, 144, 1444, 14444, \cdots$$


Find all positive integer $n$ such that $n$ is a square and its last four digits are the same.

Solve the following equation in positive integers: $15x - 35y + 3 = z^2$

Find a four-digit square number whose first two digits are the same and the last two digits are the same too.

Solve the following equation in positive integers: $3\times (5x + 1)=y^2$


Find all pairs of integers $(x, y)$ such that $5\times (x^2 + 3)= y^2$.


Let $A$ and $B$ be two positive integers and $A=B^2$. If $A$ satisfies the following conditions, find the value of $B$:

  • $A$'s thousands digit is $4$
  • $A$'s tens digit is $9$
  • The sum of all $A$'s digits is $19$

If the middle term of three consecutive integers is a perfect square, then the product of these three numbers is called a $\textit{beautiful}$ number. What is the greatest common divisor of all the $\textit{beautiful}$ numbers?

Find the smallest square whose last three digits are the same but not equal $0$.

Let both $A$ and $B$ be two-digit numbers, and their difference is $14$. If the last two digits of $A^2$ and $B^2$ are the same, what are all the possible values of $A$ and $B$.

Find such a positive integer $n$ such that both $(n-100)$ and $(n-63)$ are square numbers.

Find such a positive integer $n$ such that both $(n+23)$ and $(n-30)$ are square numbers.

Find the smallest positive integer $n$ such that $\frac{12!}{n}$ is a square.

Find all the integer solutions to the equation $xy - 10(x+ y)= 1$.


Solve in integers the equation $x^2 - xy +2x -3 y = 0$


Solve the following system in integers: $$ \left\{ \begin{array}{ll} x_1 + x_2 + \cdots + x_n &= n \\ x_1^2 + x_2^2 + \cdots + x_n^2 &= n \\ \cdots\\ x_1^n + x_2^n + \cdots + x_n^n &= n \end{array} \right. $$

Show that for any positive integer $n$, the following relationship holds: $$2^n+2 > n^2$$

Let $\triangle{ABC}$ be an acute triangle. If the distance between the vertex $A$ and the orthocenter $H$ is equal to the radius of its circumcircle, find the measurement of $\angle{A}$.

Let $AD$ be the altitude in $\triangle{ABC}$ from the vertex $A$. If $\angle{A}=45^\circ$, $BD=3$, $DC=2$, find the area of $\triangle{ABC}$.

Let $O$ be the incenter of $\triangle{ABC}$. Connect $AO$, $BO$, and $CO$ and extends so that they intersect with $\triangle{ABC}$'s circumcircle at $D$, $E$, and $F$, respectively. Let $DE$ intersect $AC$ at $G$, and $DF$ intersects $AB$ at $H$. Show that $G$, $H$ and $O$ are collinear.