Practice (129)

back to index  |  new

The graph shows the number of minutes studied by both Asha (black bar) and Sasha (grey bar) in one week. On the average, how many more minutes per day did Sasha study than Asha?


The diagram below shows the circular face of a clock with radius $20$ cm and a circular disk with radius $10$ cm externally tangent to the clock face at $12$ o'clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction?


Orvin went to the store with just enough money to buy $30$ balloons. When he arrived, he discovered that the store had a special sale on balloons: buy $1$ balloon at the regular price and get a second at $\frac{1}{3}$ off the regular price. What is the greatest number of balloons Orvin could buy?

Let $a$ and $b$ be relatively prime integers with $a>b>0$ and $\frac{a^3-b^3}{(a-b)^3}$ = $\frac{73}{3}$. What is $a-b$?

Two integers have a sum of 26. When two more integers are added to the first two integers the sum is 41. Finally when two more integers are added to the sum of the previous four integers the sum is 57. What is the minimum number of even integers among the 6 integers?

If $2^n-1$ is a prime number, prove $n$ must be a prime number too.

There are $52$ people in a room. what is the largest value of $n$ such that the statement "At least $n$ people in this room have birthdays falling in the same month" is always true?

Rectangle $ABCD$ has $AB = 6$ and $BC = 3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?

What is the sum of the digits of the square of $111,111,111$?

At Jefferson Summer Camp, $60\%$ of the children play soccer, $30\%$ of the children swim, and $40\%$ of the soccer players swim. To the nearest whole percent, what percent of the non-swimmers play soccer?

Two cubical dice each have removable numbers $1$ through $6$. The twelve numbers on the two dice are removed, put into a bag, then drawn one at a time and randomly reattached to the faces of the cubes, one number to each face. The dice are then rolled and the numbers on the two top faces are added. What is the probability that the sum is $7$?

Convex quadrilateral $ABCD$ has $AB = 9$ and $CD = 12$. Diagonals $AC$ and $BD$ intersect at $E$, $AC = 14$, and $\triangle AED$ and $\triangle BEC$ have equal areas. What is $AE$?

Ten chairs are evenly spaced around a round table and numbered clockwise from $1$ through $10$. Five married couples are to sit in the chairs with men and women alternating, and no one is to sit either next to or across from his/her spouse. How many seating arrangements are possible?

Integers $a, b, c,$ and $d$, not necessarily distinct, are chosen independently and at random from $0$ to $2019$, inclusive. What is the probability that $(ad-bc)$ is even?

A bug starts at one vertex of a cube and moves along the edges of the cube according to the following rule. At each vertex the bug will choose to travel along one of the three edges emanating from that vertex. Each edge has equal probability of being chosen, and all choices are independent. What is the probability that after seven moves the bug will have visited every vertex exactly once?

In square units, what is the area of the region bounded by the graph of |x \u2013 y| + |x + y| = 6 ?

Call a positive integer squarish if it contains the digits of the squares of its digits in order but not necessarily contiguous. For example, $14263$ contains $1^2 = 1$, $4^2 = 16$ and $2^2 = 4$. However, it is not squarish because it does not contain $3^2 = 9$, and $6^2 = 36$ is not in order. What is the smallest squarish number that includes at least one digit greater than $1$?

Place 9 points in a unit square. Prove it is possible to select 3 points from them to create a triangle whose area is no more than $\frac{1}{8}$.

The first and last initials of the 348 students form a unique ordered letter pair. We must find how many more students are required to guarantee that there are two students whose initials form the same ordered letter pair.

There are $7$ boys each of which has at least $3$ brothers among the other $6$ boys. Are these $7$ boys necessarily all brothers? Explain.

Let $\alpha$ and $\beta$ be two real roots of the equation $x^2 + x - 4=0$. Find the value of $\alpha^2 - 5\beta + 10$ without computing the value of $\alpha$ and $\beta$.

Prove: any convex pentagon must have three vertices $A$, $B$, and $C$ satisfying $\angle{ABC} \le 36^\circ$.

Given any four points on a plane, prove the ratio of the farthest distance between any two points over the shortest distance must be at least $\sqrt{2}$. What if the number of points is 5?

There are $99$ points on a plane. Among any three points, at least two of them are not more than $1$ unit length apart. Prove: it is possible to cover $50$ of these points using a unit circle.

Let $a_1, a_2, a_3, \cdots a_n$ be a randomly ordered sequence of 1, 2, 3, . . . , $n$. Prove the following product is an even number if $n$ is an odd integer: $$(a_1 -1)(a_2-2)(a_3-3)\cdots(a_n-n)$$