Let $a_0$, $a_1$, $a_2$, $\cdots$ be an increasing sequence of non-negative integers such that every non-negative integer can be expressed uniquely in the form of $(a_i + 2a_j+4a_k)$ where $i$, $j$, and $k$ are not necessarily distinct. Determine $a_{1998}$.

Let $p$ be an odd prime number. Find the number of subsets $\mathbb{A}$ of the set $\{1, 2, \cdots, 2p\}$ such that $\mathbb{A}$ has exactly $p$ elements and the sum of all elements in $\mathbb{A}$ is divisible by $p$.