#### Practice (10,17)

###### back to index | new

Let ${{a}_{2}}, {{a}_{3}}, \cdots, {{a}_{n}}$ be positive real numbers that satisfy ${{a}_{2}}\cdot {{a}_{3}}\cdots {{a}_{n}}=1$ . Prove that $$(a_2+1)^2\cdot (a_3+1)^3\cdots (a_n+1)^n\ge n^n$$

Solve the equation $\cos^2 x + \cos^2 2x +\cos^2 3x=1$ in $(0, 2\pi)$.

Prove for every positive integer $n$ and real number $x\ne \frac{k\pi}{2^t}$ where $t =0, 1, 2,\cdots$ and $k$ is an integer, the following relation always holds: $$\frac{1}{\sin 2x}+\frac{1}{\sin 4x} + \cdots +\frac{1}{\sin 2^nx}=\frac{1}{\tan x}-\frac{1}{\tan 2^nx}$$

Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.

Find all integers $n$ for which each cell of $n \times n$ table can be filled with one of the letters $I,M$ and $O$ in such a way that: in each row and each column, one third of the entries are $I$, one third are $M$ and one third are $O$; and in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are $I$, one third are $M$ and one third are $O$. Note. The rows and columns of an $n \times n$ table are each labelled $1$ to $n$ in a natural order. Thus each cell corresponds to a pair of positive integer $(i,j)$ with $1 \le i,j \le n$. For $n>1$, the table has $4n-2$ diagonals of two types. A diagonal of first type consists all cells $(i,j)$ for which $i+j$ is a constant, and the diagonal of this second type consists all cells $(i,j)$ for which $i-j$ is constant.

Let $P=A_1A_2\cdots A_k$ be a convex polygon in the plane. The vertices $A_1, A_2, \ldots, A_k$ have integral coordinates and lie on a circle. Let $S$ be the area of $P$. An odd positive integer $n$ is given such that the squares of the side lengths of $P$ are integers divisible by $n$. Prove that $2S$ is an integer divisible by $n$.

A set of postive integers is called fragrant if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$is fragrant?

The equation $$(x-1)(x-2)\cdots(x-2016)=(x-1)(x-2)\cdots (x-2016)$$is written on the board, with $2016$ linear factors on each side. What is the least possible value of $k$ for which it is possible to erase exactly $k$ of these $4032$ linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?

There are $n\ge 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps,each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will every occupy the same intersection point at the same time. (a) Prove that Geoff can always fulfill his wish if $n$ is odd. (b) Prove that Geoff can never fulfill his wish if $n$ is even.

We say that a finite set $\mathcal{S}$ of points in the plane is balanced if, for any two different points $A$ and $B$ in $\mathcal{S}$, there is a point $C$ in $\mathcal{S}$ such that $AC=BC$. We say that $\mathcal{S}$ is centre-free if for any three different points $A$, $B$ and $C$ in $\mathcal{S}$, there is no points $P$ in $\mathcal{S}$ such that $PA=PB=PC$. (a) Show that for all integers $n\ge 3$, there exists a balanced set consisting of $n$ points. (b) Determine all integers $n\ge 3$ for which there exists a balanced centre-free set consisting of $n$ points. Proposed by Netherlands

Find all postive integers $(a,b,c)$ such that $$ab-c,\quad bc-a,\quad ca-b$$are all powers of $2$. Proposed by Serbia

Let $ABC$ be an acute triangle with $AB > AC$. Let $\Gamma$ be its cirumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HQA = 90^{\circ}$ and let $K$ be the point on $\Gamma$ such that $\angle HKQ = 90^{\circ}$. Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\Gamma$ in this order. Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other. Proposed by Ukraine

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. Proposed by Greece

Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation$f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)$for all real numbers $x$ and $y$. Proposed by Dorlir Ahmeti, Albania

The sequence $a_1,a_2,\dots$ of integers satisfies the conditions: (i) $1\le a_j\le2015$ for all $j\ge1$, (ii) $k+a_k\neq \ell+a_\ell$ for all $1\le k<\ell$. Prove that there exist two positive integers $b$ and $N$ for which$\left\vert\sum_{j=m+1}^n(a_j-b)\right\vert\le1007^2$for all integers $m$ and $n$ such that $n>m\ge N$. Proposed by Ivan Guo and Ross Atkins, Australia

Let $a_0 < a_1 < a_2 \ldots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that $a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.$ Proposed by Gerhard Wöginger, Austria.

Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.

Convex quadrilateral $ABCD$ has $\angle ABC = \angle CDA = 90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside triangle $SCT$ and $\angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}.$ Prove that line $BD$ is tangent to the circumcircle of triangle $TSH$.

Let $P$ and $Q$ be on segment $BC$ of an acute triangle $ABC$ such that $\angle PAB=\angle BCA$ and $\angle CAQ=\angle ABC$. Let $M$ and $N$ be the points on $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$ and $Q$ is the midpoint of $AN$. Prove that the intersection of $BM$ and $CN$ is on the circumference of triangle $ABC$. Proposed by Giorgi Arabidze, Georgia.

For each positive integer $n$, the Bank of Cape Town issues coins of denomination $\frac1n$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most most $99+\frac12$, prove that it is possible to split this collection into $100$ or fewer groups, such that each group has total value at most $1$.

A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its finite regions. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary. Note: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.

Assume that $k$ and $n$ are two positive integers. Prove that there exist positive integers $m_1 , \dots , m_k$ such that $1+\frac{2^k-1}{n}=\left(1+\frac1{m_1}\right)\cdots \left(1+\frac1{m_k}\right).$Proposed by Japan

A configuration of $4027$ points in the plane is called Colombian if it consists of $2013$ red points and $2014$ blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied: i) No line passes through any point of the configuration. ii) No region contains points of both colors. Find the least value of $k$ such that for any Colombian configuration of $4027$ points, there is a good arrangement of $k$ lines. Proposed by Ivan Guo from Australia.

Let the excircle of triangle $ABC$ opposite the vertex $A$ be tangent to the side $BC$ at the point $A_1$. Define the points $B_1$ on $CA$ and $C_1$ on $AB$ analogously, using the excircles opposite $B$ and $C$, respectively. Suppose that the circumcentre of triangle $A_1B_1C_1$ lies on the circumcircle of triangle $ABC$. Prove that triangle $ABC$ is right-angled. Proposed by Alexander A. Polyansky, Russia

Let $ABC$ be an acute triangle with orthocenter $H$, and let $W$ be a point on the side $BC$, lying strictly between $B$ and $C$. The points $M$ and $N$ are the feet of the altitudes from $B$ and $C$, respectively. Denote by $\omega_1$ is the circumcircle of $BWN$, and let $X$ be the point on $\omega_1$ such that $WX$ is a diameter of $\omega_1$. Analogously, denote by $\omega_2$ the circumcircle of triangle $CWM$, and let $Y$ be the point such that $WY$ is a diameter of $\omega_2$. Prove that $X,Y$ and $H$ are collinear. Proposed by Warut Suksompong and Potcharapol Suteparuk, Thailand