Practice (117)

back to index  |  new

In acute $\triangle{ABC}$, $\angle{ACB}=2\angle{ABC}$. Let $D$ be a point on $BC$ such that $\angle{ABC}=2\angle{BAD}$. Show that $$\frac{1}{BD}=\frac{1}{AB}+\frac{1}{AC}$$

As shown.


Let $O$ be a point inside a convex pentagon, as shown, such that $\angle{1} = \angle{2}, \angle{3} = \angle{4}, \angle{5} = \angle{6},$ and $\angle{7} = \angle{8}$. Show that either $\angle{9} = \angle{10}$ or $\angle{9} + \angle{10} = 180^\circ$ holds.


In $\triangle{ABC}$, $AB = 33, AC=21,$ and $BC=m$ where $m$ is an integer. There exist points $D$ and $E$ on $AB$ and $AC$, respectively, such that $AD=DE=EC=n$ where $n$ is also an integer. Find all the possible values of $m$.


Let quadrilateral $ABCD$ inscribe a circle. If $BE=ED$, prove $$AB^2+BC^2 +CD^2 + DA^2 = 2AC^2$$


In $\triangle{ABC}$, $AE$ and $AF$ trisects $\angle{A}$, $BF$ and $BD$ trisects $\angle{B}$, $CD$ and $CE$ trisects $\angle{C}$. Show that $\triangle{DEF}$ is equilateral.


As shown, $\angle{ACB} = 90^\circ$, $AD=DB$, $DE=DC$, $EM\perp AB$, and $EN\perp CD$. Prove $$MN\cdot AB = AC\cdot CB$$


As shown, in $\triangle{ABC}$, $AB=AC$, $\angle{A} = 20^\circ$, $\angle{ABE} = 30^\circ$, and $\angle{ACD}=20^\circ$. Find the measurement of $\angle{CDE}$.


In tetrahedron $ABCD$, $\angle{ADB} = \angle{BDC} = \angle{CDA} = 60^\circ$, $AD=BD=3$, and $CD=2$. Find the radius of $ABCD$'s circumsphere.


Show that $\sin{x}+2\sin{2x}+\cdots + n\sin{nx}=\frac{(n+1)\sin{nx} - n\sin{(n+1)x}}{2(1-\cos{x})}$

Simplify $\cos{x}\cos{2x}\cdots\cos{2^{n-1}x}$.

Evaluate $\cos\frac{2\pi}{2n+1}+\cos\frac{4\pi}{2n+1}+\cdots+\cos\frac{2n\pi}{2n+1}$.

Show that $C_n^0-C_n^2+C_n^4-C_n^6+\cdots=2^{\frac{n}{2}}\cos\frac{n\pi}{4}$.

Show that \begin{align*} C_n^0-C_n^2+C_n^4-C_n^6+\cdots &=2^{\frac{n}{2}}\cos\frac{n\pi}{4}\\ C_n^1-C_n^3+C_n^5-C_n^7+\cdots &=2^{\frac{n}{2}}\sin\frac{n\pi}{4} \end{align*}

Let sequence $\{a_n\}$ satisfy $a_0=1$ and $a_n=\frac{\sqrt{1+a_{n-1}^2}-1}{a_{n-1}}$. Prove $a_n > \frac{\pi}{2^{n+2}}$.

Show that $|\sin(nx)|\le n|\sin(x)|$ for any positive integer $n$.

Show that if $a, b, c$ are the lengths of the sides of a triangle, then the equation $$b^2x^2 +(b^2+c^2-a^2)x+c^2=0$$ does not have real roots.

Simplify $$\sin{x} + \sin{2x} + \cdots +\sin{nx}$$ and $$\cos{x} + \cos{2x} + \cdots + \cos{nx}$$

Solve the equation $\cos\theta + \cos 2\theta + \cos 3\theta = \sin \theta +\sin 2\theta + \sin 3\theta$.

Let $A, B,$ and $C$ be angles of a triangle. If $\cos 3A + \cos 3B + \cos 3C = 1$, determine the largest angle of the triangle.

Find the value of $\cos 20^\circ \cos 40^\circ \cos 80^\circ$ using at least two difference methods.

Simplofy $\sin\theta + \frac{1}{2}\cdot\sin 2\theta + \frac{1}{4}\cdot\sin 3\theta + \cdots$.

Solve the equation $\cos^2 x + \cos^2 2x +\cos^2 3x=1$ in $(0, 2\pi)$.

Prove for every positive integer $n$ and real number $x\ne \frac{k\pi}{2^t}$ where $t =0, 1, 2,\cdots$ and $k$ is an integer, the following relation always holds: $$\frac{1}{\sin 2x}+\frac{1}{\sin 4x} + \cdots +\frac{1}{\sin 2^nx}=\frac{1}{\tan x}-\frac{1}{\tan 2^nx}$$

Let $\alpha\in\Big(\frac{3\pi}{2}, 2\pi\Big)$. Simplify $$\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\cdot\cos 2\alpha}}$$