Practice (90/1000)

back to index  |  new

865
A circle of radius $r$ is concentric with and outside a regular hexagon of side length $2$. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is $\frac{1}{2}$. What is $r$?

866
Given a finite sequence $S=(a_1,a_2,\ldots ,a_n)$ of $n$ real numbers, let $A(S)$ be the sequence $\left(\frac{a_1+a_2}{2},\frac{a_2+a_3}{2},\ldots ,\frac{a_{n-1}+a_n}{2}\right)$ of $n-1$ real numbers. Define $A^1(S)=A(S)$ and, for each integer $m$, $2\le m\le n-1$, define $A^m(S)=A(A^{m-1}(S))$. Suppose $x>0$, and let $S=(1,x,x^2,\ldots ,x^{100})$. If $A^{100}(S)=(1\/2^{50})$, then what is $x$?

867

The expression $(x+y+z)^{2006}+(x-y-z)^{2006}$ can be simplified by expanding it and combining like terms. How many terms are there in the simplified expression?


868
How many non- empty subsets $S$ of $\{1,2,3,\ldots ,15\}$ have the following two properties? $(1)$ No two consecutive integers belong to $S$. $(2)$ If $S$ contains $k$ elements, then $S$ contains no number less than $k$.

875
Mr. and Mrs. Lopez have two children. When they get into their family car, two people sit in the front, and the other two sit in the back. Either Mr. Lopez or Mrs. Lopez must sit in the driver's seat. How many seating arrangements are possible?

876
The lines $x = \frac 14y + a$ and $y = \frac 14x + b$ intersect at the point $(1,2)$. What is $a + b$?

877
How many even three-digit integers have the property that their digits, read left to right, are in strictly increasing order?

880
The parabola $y=ax^2+bx+c$ has vertex $(p,p)$ and $y$-intercept $(0,-p)$, where $p\ne 0$. What is $b$?

881
Rhombus $ABCD$ is similar to rhombus $BFDE$. The area of rhombus $ABCD$ is 24, and $\angle BAD = 60^\circ$. What is the area of rhombus $BFDE$?


883
Circles with centers $O$ and $P$ have radii 2 and 4, respectively, and are externally tangent. Points $A$ and $B$ are on the circle centered at $O$, and points $C$ and $D$ are on the circle centered at $P$, such that $\overline{AD}$ and $\overline{BC}$ are common external tangents to the circles. What is the area of hexagon $AOBCPD$?


884
Regular hexagon $ABCDEF$ has vertices $A$ and $C$ at $(0,0)$ and $(7,1)$, respectively. What is its area?

885
For a particular peculiar pair of dice, the probabilities of rolling $1$, $2$, $3$, $4$, $5$ and $6$ on each die are in the ratio $1:2:3:4:5:6$. What is the probability of rolling a total of $7$ on the two dice?

886
An object in the plane moves from one lattice point to another. At each step, the object may move one unit to the right, one unit to the left, one unit up, or one unit down. If the object starts at the origin and takes a ten-step path, how many different points could be the final point?

888
Let $x$ be chosen at random from the interval $(0,1)$. What is the probability that $\lfloor\log_{10}4x\rfloor - \lfloor\log_{10}x\rfloor = 0$? Here $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x$.

889
Rectangle $ABCD$ has area $2006$. An ellipse with area $2006\pi$ passes through $A$ and $C$ and has foci at $B$ and $D$. What is the perimeter of the rectangle? (The area of an ellipse is $ab\pi$ where $2a$ and $2b$ are the lengths of the axes.)

890
Suppose $a$, $b$ and $c$ are positive integers with $a+b+c=2006$, and $a!b!c!=m\cdot 10^n$, where $m$ and $n$ are integers and $m$ is not divisible by $10$. What is the smallest possible value of $n$?

891
Isosceles $\triangle ABC$ has a right angle at $C$. Point $P$ is inside $\triangle ABC$, such that $PA=11$, $PB=7$, and $PC=6$. Legs $\overline{AC}$ and $\overline{BC}$ have length $s=\sqrt{a+b\sqrt{2}}$, where $a$ and $b$ are positive integers. What is $a+b$?


892
Let $S$ be the set of all point $(x,y)$ in the coordinate plane such that $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \frac{\pi}{2}$. What is the area of the subset of $S$ for which \[\sin^2x-\sin x \sin y + \sin^2y \le \frac34?\]

893
A sequence $a_1,a_2,\dots$ of non-negative integers is defined by the rule $a_{n+2}=|a_{n+1}-a_n|$ for $n\geq 1$. If $a_1=999$, $a_2<999$ and $a_{2006}=1$, how many different values of $a_2$ are possible?

896
A rectangle with diagonal length $x$ is twice as long as it is wide. What is the area of the rectangle?

900
Square $EFGH$ is inside the square $ABCD$ so that each side of $EFGH$ can be extended to pass through a vertex of $ABCD$. Square $ABCD$ has side length $\sqrt {50}$ and $BE = 1$. What is the area of the inner square $EFGH$?

901
Let $A,M$, and $C$ be digits with \[(100A+10M+C)(A+M+C) = 2005\] What is $A$?

902
There are two values of $a$ for which the equation $4x^2 + ax + 8x + 9 = 0$ has only one solution for $x$. What is the sum of these values of $a$?

905
A line passes through $A\ (1,1)$ and $B\ (100,1000)$. How many other points with integer coordinates are on the line and strictly between $A$ and $B$?

906
The regular 5-point star $ABCDE$ is drawn and in each vertex, there is a number. Each $A,B,C,D,$ and $E$ are chosen such that all 5 of them came from set $\{3,5,6,7,9\}$. Each letter is a different number (so one possible way is $A = 3, B = 5, C = 6, D = 7, E = 9$). Let $AB$ be the sum of the numbers on $A$ and $B$, and so forth. If $AB, BC, CD, DE,$ and $EA$ form an arithmetic sequence (not necessarily in increasing order), find the value of $CD$.