CeilingAndFloor AMC10/12

Problem - 643
For every $m$ and $k$ integers with $k$ odd, denote by $\left[\frac{m}{k}\right]$ the integer closest to $\frac{m}{k}$. For every odd integer $k$, let $P(k)$ be the probability that \[\left[\frac{n}{k}\right] + \left[\frac{100 - n}{k}\right] = \left[\frac{100}{k}\right]\] for an integer $n$ randomly chosen from the interval $1 \leq n \leq 99!$. What is the minimum possible value of $P(k)$ over the odd integers $k$ in the interval $1 \leq k \leq 99$?

report an error