Practice (5)

back to index  |  new

A convex hexagon $ABCDEF$ is inscribed in a circle such that $AB = CD = EF$ and diagonals $AD$, $BE$, and $CF$ are concurrent. Let $P$ be the intersection of $AD$ and $CE$. Prove that $CP/PE = (AC/CE)^2$.

Let $\, a_1, a_2, a_3, \ldots \,$ be a sequence of positive real numbers satisfying $\, \sum_{j=1}^n a_j \geq \sqrt{n} \,$ for all $\, n \geq 1$. Prove that, for all $\, n \geq 1, \,$ \[ \sum_{j=1}^n a_j^2 > \frac{1}{4} \left( 1 + \frac{1}{2} + \cdots + \frac{1}{n} \right). \]

Let $\, |U|, \, \sigma(U) \,$ and $\, \pi(U) \,$ denote the number of elements, the sum, and the product, respectively, of a finite set $\, U \,$ of positive integers. (If $\, U \,$ is the empty set, $\, |U| = 0, \, \sigma(U) = 0, \, \pi(U) = 1$.) Let $\, S \,$ be a finite set of positive integers. As usual, let $\, \binom{n}{k} \,$ denote $\, n! \over k! \, (n-k)!$. Prove that \[ \sum_{U \subseteq S} (-1)^{|U|} \binom{m - \sigma(U)}{|S|} = \pi(S) \] for all integers $\, m \geq \sigma(S)$.

Let $\, p \,$ be an odd prime. The sequence $(a_n)_{n \geq 0}$ is defined as follows: $\, a_0 = 0,$ $a_1 = 1, \, \ldots, \, a_{p-2} = p-2 \,$ and, for all $\, n \geq p-1, \,$ $\, a_n \,$ is the least positive integer that does not form an arithmetic sequence of length $\, p \,$ with any of the preceding terms. Prove that, for all $\, n, \,$ $\, a_n \,$ is the number obtained by writing $\, n \,$ in base $\, p-1 \,$ and reading the result in base $\, p$.

A calculator is broken so that the only keys that still work are the $ \sin$, $ \cos$, and $ \tan$ buttons, and their inverses (the $ \arcsin$, $ \arccos$, and $ \arctan$ buttons). The display initially shows $ 0$. Given any positive rational number $ q$, show that pressing some finite sequence of buttons will yield the number $ q$ on the display. Assume that the calculator does real number calculations with infinite precision. All functions are in terms of radians.

Given a nonisosceles, nonright triangle ABC, let O denote the center of its circumscribed circle, and let $A_1$, $B_1$, and $C_1$ be the midpoints of sides BC, CA, and AB, respectively. Point $A_2$ is located on the ray $OA_1$ so that $OAA_1$ is similar to $OA_2A$. Points $B_2$ and $C_2$ on rays $OB_1$ and $OC_1$, respectively, are defined similarly. Prove that lines $AA_2$, $BB_2$, and $CC_2$ are concurrent, i.e. these three lines intersect at a point.

Suppose $\, q_{0}, \, q_{1}, \, q_{2}, \ldots \; \,$ is an infinite sequence of integers satisfying the following two conditions: (i) $\, m-n \,$ divides $\, q_{m}-q_{n}\,$ for $\, m > n \geq 0,$ (ii) there is a polynomial $\, P \,$ such that $\, |q_{n}| < P(n) \,$ for all $\, n$ Prove that there is a polynomial $\, Q \,$ such that $\, q_{n}= Q(n) \,$ for all $\, n$.

Suppose that in a certain society, each pair of persons can be classified as either amicable or hostile. We shall say that each member of an amicable pair is a friend of the other, and each member of a hostile pair is a foe of the other. Suppose that the society has $\, n \,$ persons and $\, q \,$ amicable pairs, and that for every set of three persons, at least one pair is hostile. Prove that there is at least one member of the society whose foes include $\, q(1 - 4q/n^2) \,$ or fewer amicable pairs.

Prove that the average of the numbers $n \sin n^{\circ} \; (n = 2,4,6,\ldots,180)$ is $\cot 1^{\circ}$.

For any nonempty set $S$ of real numbers, let $\sigma(S)$ denote the sum of the elements of $S$. Given a set $A$ of $n$ positive integers, consider the collection of all distinct sums $\sigma(S)$ as $S$ ranges over the nonempty subsets of $A$. Prove that this collection of sums can be partitioned into $n$ classes so that in each class, the ratio of the largest sum to the smallest sum does not exceed 2.

Let $ABC$ be a triangle. Prove that there is a line $\ell$ (in the plane of triangle $ABC$) such that the intersection of the interior of triangle $ABC$ and the interior of its reflection $A'B'C'$ in $\ell$ has area more than $\frac23$ the area of triangle $ABC$.

An $n$-term sequence $(x_1, x_2, \ldots, x_n)$ in which each term is either 0 or 1 is called a binary sequence of length $n$. Let $a_n$ be the number of binary sequences of length $n$ containing no three consecutive terms equal to 0, 1, 0 in that order. Let $b_n$ be the number of binary sequences of length $n$ that contain no four consecutive terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that $b_{n+1} = 2a_n$ for all positive integers $n$.

Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.

Determine (with proof) whether there is a subset $X$ of the integers with the following property: for any integer $n$ there is exactly one solution of $a + 2b = n$ with $a,b \in X$.

Let $p_1, p_2, p_3, \ldots$ be the prime numbers listed in increasing order, and let $x_0$ be a real number between 0 and 1. For positive integer $k$, define \[ x_k = \begin{cases} 0 & \mbox{if} \; x_{k-1} = 0, \\[.1in] {\displaystyle \left\{ \frac{p_k}{x_{k-1}} \right\}} & \mbox{if} \; x_{k-1} \neq 0, \end{cases} \] where $\{x\}$ denotes the fractional part of $x$. (The fractional part of $x$ is given by $x - \lfloor x \rfloor$ where $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.) Find, with proof, all $x_0$ satisfying $0 < x_0 < 1$ for which the sequence $x_0, x_1, x_2, \ldots$ eventually becomes 0.

Let $ABC$ be a triangle. Take points $D$, $E$, $F$ on the perpendicular bisectors of $BC$, $CA$, $AB$ respectively. Show that the lines through $A$, $B$, $C$ perpendicular to $EF$, $FD$, $DE$ respectively are concurrent.

Prove that for any integer $n$, there exists a unique polynomial $Q$ with coefficients in $\{0,1,\ldots,9\}$ such that $Q(-2) = Q(-5) = n$.

To clip a convex $n$-gon means to choose a pair of consecutive sides $AB, BC$ and to replace them by the three segments $AM, MN$, and $NC$, where $M$ is the midpoint of $AB$ and $N$ is the midpoint of $BC$. In other words, one cuts off the triangle $MBN$ to obtain a convex $(n+1)$-gon. A regular hexagon ${\cal P}_6$ of area 1 is clipped to obtain a heptagon ${\cal P}_7$. Then ${\cal P}_7$ is clipped (in one of the seven possible ways) to obtain an octagon ${\cal P}_8$, and so on. Prove that no matter how the clippings are done, the area of ${\cal P}_n$ is greater than $\frac 13$, for all $n \geq 6$.

Prove that, for all positive real numbers $ a$, $ b$, $ c$, the inequality \[ \frac {1}{a^3 + b^3 + abc} + \frac {1}{b^3 + c^3 + abc} + \frac {1}{c^3 + a^3 + abc} \leq \frac {1}{abc} \] holds.

Suppose the sequence of nonnegative integers $a_1, a_2, \ldots, a_{1997}$ satisfies \[ a_i + a_j \leq a_{i+j} \leq a_i + a_j + 1 \] for all $i,j \geq 1$ with $i + j \leq 1997$. Show that there exists a real number $x$ such that $a_n = \lfloor nx \rfloor$ (the greatest integer $\leq nx$) for all $1 \leq n \leq 1997$. MithsApprentice view topic

Suppose that the set $\{1,2,\cdots, 1998\}$ has been partitioned into disjoint pairs $\{a_i,b_i\}$ ($1\leq i\leq 999$) so that for all $i$, $|a_i-b_i|$ equals $1$ or $6$. Prove that the sum \[ |a_1-b_1|+|a_2-b_2|+\cdots +|a_{999}-b_{999}| \] ends in the digit $9$.

Let ${\cal C}_1$ and ${\cal C}_2$ be concentric circles, with ${\cal C}_2$ in the interior of ${\cal C}_1$. From a point $A$ on ${\cal C}_1$ one draws the tangent $AB$ to ${\cal C}_2$ ($B\in {\cal C}_2$). Let $C$ be the second point of intersection of $AB$ and ${\cal C}_1$, and let $D$ be the midpoint of $AB$. A line passing through $A$ intersects ${\cal C}_2$ at $E$ and $F$ in such a way that the perpendicular bisectors of $DE$ and $CF$ intersect at a point $M$ on $AB$. Find, with proof, the ratio $AM/MC$.

Let $a_0,a_1,\cdots ,a_n$ be numbers from the interval $(0,\pi/2)$ such that \[ \tan (a_0-\frac{\pi}{4})+ \tan (a_1-\frac{\pi}{4})+\cdots +\tan (a_n-\frac{\pi}{4})\geq n-1. \] Prove that \[ \tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}. \]

A computer screen shows a $98 \times 98$ chessboard, colored in the usual way. One can select with a mouse any rectangle with sides on the lines of the chessboard and click the mouse button: as a result, the colors in the selected rectangle switch (black becomes white, white becomes black). Find, with proof, the minimum number of mouse clicks needed to make the chessboard all one color.

Prove that for each $n\geq 2$, there is a set $S$ of $n$ integers such that $(a-b)^2$ divides $ab$ for every distinct $a,b\in S$.