Practice (5)

back to index  |  new

Let $P(z)= z^n + c_1 z^{n-1} + c_2 z^{n-2} + \cdots + c_n$ be a polynomial in the complex variable $z$, with real coefficients $c_k$. Suppose that $|P(i)| < 1$. Prove that there exist real numbers $a$ and $b$ such that $P(a + bi) = 0$ and $(a^2 + b^2 + 1)^2 < 4 b^2 + 1$.

Let $ABC$ be an acute-angled triangle whose side lengths satisfy the inequalities $AB < AC < BC$. If point $I$ is the center of the inscribed circle of triangle $ABC$ and point $O$ is the center of the circumscribed circle, prove that line $IO$ intersects segments $AB$ and $BC$.

Let $u$ and $v$ be real numbers such that \[ (u + u^2 + u^3 + \cdots + u^8) + 10u^9 = (v + v^2 + v^3 + \cdots + v^{10}) + 10v^{11} = 8. \] Determine, with proof, which of the two numbers, $u$ or $v$, is larger.

A certain state issues license plates consisting of six digits (from 0 to 9). The state requires that any two license plates differ in at least two places. (For instance, the numbers 027592 and 020592 cannot both be used.) Determine, with proof, the maximum number of distinct license plates that the state can use.

A sequence of functions $\, \{f_n(x) \} \,$ is defined recursively as follows: \begin{align*}f_1(x) &= \sqrt{x^2 + 48}, \quad \mbox{and} \\ f_{n+1}(x) &= \sqrt{x^2 + 6f_n(x)} \quad \mbox{for } n \geq 1.\end{align*}(Recall that $\sqrt{\makebox[5mm]{}}$ is understood to represent the positive square root.) For each positive integer $n$, find all real solutions of the equation $\, f_n(x) = 2x \,$.

Suppose that necklace $\, A \,$ has 14 beads and necklace $\, B \,$ has 19. Prove that for any odd integer $n \geq 1$, there is a way to number each of the 33 beads with an integer from the sequence \[ \{ n, n+1, n+2, \dots, n+32 \} \] so that each integer is used once, and adjacent beads correspond to relatively prime integers. (Here a ``necklace'' is viewed as a circle in which each bead is adjacent to two other beads.)

Find, with proof, the number of positive integers whose base-$n$ representation consists of distinct digits with the property that, except for the leftmost digit, every digit differs by $\pm 1$ from some digit further to the left. (Your answer should be an explicit function of $n$ in simplest form.)

An acute-angled triangle $ABC$ is given in the plane. The circle with diameter $\, AB \,$ intersects altitude $\, CC' \,$ and its extension at points $\, M \,$ and $\, N \,$, and the circle with diameter $\, AC \,$ intersects altitude $\, BB' \,$ and its extensions at $\, P \,$ and $\, Q \,$. Prove that the points $\, M, N, P, Q \,$ lie on a common circle.

In triangle $\, ABC, \,$ angle $\,A\,$ is twice angle $\,B,\,$ angle $\,C\,$ is obtuse, and the three side lengths $\,a,b,c\,$ are integers. Determine, with proof, the minimum possible perimeter.

For any nonempty set $\,S\,$ of numbers, let $\,\sigma(S)\,$ and $\,\pi(S)\,$ denote the sum and product, respectively, of the elements of $\,S\,$. Prove that \[ \sum \frac{\sigma(S)}{\pi(S)} = (n^2 + 2n) - \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right) (n+1), \] where ``$\Sigma$'' denotes a sum involving all nonempty subsets $S$ of $\{1,2,3, \ldots,n\}$.

Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[ 2, \; 2^2, \; 2^{2^2}, \; 2^{2^{2^2}}, \ldots (\mbox{mod} \; n) \]is eventually constant. [The tower of exponents is defined by $a_1 = 2, \; a_{i+1} = 2^{a_i}$. Also $a_i \; (\mbox{mod} \; n)$ means the remainder which results from dividing $a_i$ by $n$.]

Let $a = \frac{m^{m+1} + n^{n+1}}{m^m + n^n}$, where $m$ and $n$ are positive integers. Prove that $a^m + a^n \geq m^m + n^n$.

Let $\, D \,$ be an arbitrary point on side $\, AB \,$ of a given triangle $\, ABC, \,$ and let $\, E \,$ be the interior point where $\, CD \,$ intersects the external common tangent to the incircles of triangles $\, ACD \,$ and $\, BCD$. As $\, D \,$ assumes all positions between $\, A \,$ and $\, B \,$, prove that the point $\, E \,$ traces the arc of a circle.

Find, as a function of $\, n, \,$ the sum of the digits of \[ 9 \times 99 \times 9999 \times \cdots \times \left( 10^{2^n} - 1 \right), \] where each factor has twice as many digits as the previous one.

Prove \[ \frac{1}{\cos 0^\circ \cos 1^\circ} + \frac{1}{\cos 1^\circ \cos 2^\circ} + \cdots + \frac{1}{\cos 88^\circ \cos 89^\circ} = \frac{\cos 1^\circ}{\sin^2 1^\circ}. \]

For a nonempty set $\, S \,$ of integers, let $\, \sigma(S) \,$ be the sum of the elements of $\, S$. Suppose that $\, A = \{a_1, a_2, \ldots, a_{11} \} \,$ is a set of positive integers with $\, a_1 < a_2 < \cdots < a_{11} \,$ and that, for each positive integer $\, n\leq 1500, \,$ there is a subset $\, S \,$ of $\, A \,$ for which $\, \sigma(S) = n$. What is the smallest possible value of $\, a_{10}$?

Chords $AA^{\prime}$, $BB^{\prime}$, $CC^{\prime}$ of a sphere meet at an interior point $P$ but are not contained in a plane. The sphere through $A$, $B$, $C$, $P$ is tangent to the sphere through $A^{\prime}$, $B^{\prime}$, $C^{\prime}$, $P$. Prove that $\, AA' = BB' = CC'$.

Let $\, P(z) \,$ be a polynomial with complex coefficients which is of degree $\, 1992 \,$ and has distinct zeros. Prove that there exist complex numbers $\, a_1, a_2, \ldots, a_{1992} \,$ such that $\, P(z) \,$ divides the polynomial \[ \left( \cdots \left( (z-a_1)^2 - a_2 \right)^2 \cdots - a_{1991} \right)^2 - a_{1992}. \]

For each integer $\, n \geq 2, \,$ determine, with proof, which of the two positive real numbers $\, a \,$ and $\, b \,$ satisfying \[ a^n = a + 1, \hspace{.3in} b^{2n} = b + 3a \] is larger.

Let $\, ABCD \,$ be a convex quadrilateral such that diagonals $\, AC \,$ and $\, BD \,$ intersect at right angles, and let $\, E \,$ be their intersection. Prove that the reflections of $\, E \,$ across $\, AB, \, BC, \, CD, \, DA \,$ are concyclic.

Consider functions $\, f: [0,1] \rightarrow \mathbb{R} \,$ which satisfy (i) $f(x) \geq 0 \,$ for all $\, x \,$ in $\, [0,1],$ (ii) $f(1) = 1,$ (iii) $f(x) + f(y) \leq f(x+y)\,$ whenever $\, x, \, y, \,$ and $\, x + y \,$ are all in $\, [0,1]$. Find, with proof, the smallest constant $\, c \,$ such that \[ f(x) \leq cx \]for every function $\, f \,$ satisfying (i)-(iii) and every $\, x \,$ in $\, [0,1]$.

Let $\, a,b \,$ be odd positive integers. Define the sequence $\, (f_n ) \,$ by putting $\, f_1 = a,$ $f_2 = b, \,$ and by letting $\, f_n \,$ for $\, n \geq 3 \,$ be the greatest odd divisor of $\, f_{n-1} + f_{n-2}$. Show that $\, f_n \,$ is constant for $\, n \,$ sufficiently large and determine the eventual value as a function of $\, a \,$ and $\, b$.

Let $ \, a_{0}, a_{1}, a_{2},\ldots\,$ be a sequence of positive real numbers satisfying $ \, a_{i-1}a_{i+1}\leq a_{i}^{2}\,$ for $ i = 1,2,3,\ldots\; .$ (Such a sequence is said to be log concave.) Show that for each $ \, n > 1,$ \[ \frac{a_{0}+\cdots+a_{n}}{n+1}\cdot\frac{a_{1}+\cdots+a_{n-1}}{n-1}\geq\frac{a_{0}+\cdots+a_{n-1}}{n}\cdot\frac{a_{1}+\cdots+a_{n}}{n}.\]

Let $\, k_1 < k_2 < k_3 < \cdots \,$ be positive integers, no two consecutive, and let $\, s_m = k_1 + k_2 + \cdots + k_m \,$ for $\, m = 1,2,3, \ldots \; \;$. Prove that, for each positive integer $\, n, \,$ the interval $\, [s_n, s_{n+1}) \,$ contains at least one perfect square.

The sides of a 99-gon are initially colored so that consecutive sides are red, blue, red, blue, $\,\ldots, \,$ red, blue, yellow. We make a sequence of modifications in the coloring, changing the color of one side at a time to one of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modifications, is it possible to arrive at the coloring in which consecutive sides are red, blue, red, blue, red, blue, $\, \ldots, \,$ red, yellow, blue?