Practice (20)

back to index  |  new

Compute $1\times 2 + 2\times 3 + \cdots + 19\times 20$

Let $\{a_n\}$ be a geometric sequence whose initial term is $a_1$ and common ratio is $q$. Show that $$a_1\binom{n}{0}-a_2\binom{n}{1}+a_3\binom{n}{2}-a_4\binom{n}{3}+\cdots+(-1)^na_{n+1}\binom{n}{n}=a_1(1-q)^n$$

where $n$ is a positive integer.


Let $\mathbb{N}$ be the set containing all positive integers. Is it possible to partition $\mathbb{N}$ to more than one but still a finite number of arithmetic sequences with no two having the same common difference?


Let $(a_n)$ and $(b_n)$ be the sequences of real numbers such that\[ (2 + i)^n = a_n + b_ni \]for all integers $n\geq 0$, where $i = \sqrt{-1}$. What is\[\sum_{n=0}^\infty\frac{a_nb_n}{7^n}\,?\]