Practice (90/1000)

back to index  |  new

Freddy the frog is jumping around the coordinate plane searching for a river, which lies on the horizontal line $y = 24$. A fence is located at the horizontal line $y = 0$. On each jump Freddy randomly chooses a direction parallel to one of the coordinate axes and moves one unit in that direction. When he is at a point where $y=0$, with equal likelihoods he chooses one of three directions where he either jumps parallel to the fence or jumps away from the fence, but he never chooses the direction that would have him cross over the fence to where $y < 0$. Freddy starts his search at the point $(0, 21)$ and will stop once he reaches a point on the river. Find the expected number of jumps it will take Freddy to reach the river.


Centered at each lattice point in the coordinate plane are a circle radius $\frac{1}{10}$ and a square with sides of length $\frac{1}{5}$ whose sides are parallel to the coordinate axes. The line segment from $(0,0)$ to $(1001, 429)$ intersects $m$ of the squares and $n$ of the circles. Find $m + n$.

Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.

The sum of the three different positive unit fractions is $\frac{6}{7}$. What is the least number that could be the sum of the denominators of these fractions?

Camy made a list of every possible distinct five-digit positive even integer that can be formed using each of the digits 1,3, 4, 5 and 9 exactly once in each integer. What is the sum of the integers on Camy’s list?

Let $ABC$ be a right triangle where $AB=4, BC=3$ and $AC=5$. Draw square $ACEF$ and $BCDG$ as shown. Find the area of $\triangle{CDE}$.


Let $ABCD$ be a convex quadrilateral and the two diagonals intersect at point $O$. If $AC = 12, BD=5$ and $\angle{AOB}=2\angle{BOC}$, find the area of $S_{ABCD}$

In $\triangle{ABC}$, if $(b+c):(c+a):(a+b)=5:6:7$, compute $\sin{A}:\sin{B}:\sin{C}$.

Let quadrilateral $ABCD$ inscribe in a circle. If $\angle{CAD}=30^\circ$, $\angle{ACB}=45^\circ$, and $CD=2$. Find the length of $AB$.


In $\triangle{ABC}$, if $\sin{A}:\sin{B}:\sin{C}=4:5:7$, compute $\cos{C}$ and $\sin{C}$.

In $\triangle{ABC}$, if $(a+b+c)(a+b-c)=3ab$, compute $\angle{C}$.

A regular pentagon is inscribed in a unit circle. Find the perimeter of this pentagon.

Two people located 500 yards apart have spotted a hot air balloon. The angle of elevation from one person to the balloon is $67^\circ$. From the second person to the balloon the angle of elevation is $46^\circ$. How high is the balloon when it is spotted? (You can use a calculator. Please keep the result to the 2 decimal places.)

In $\triangle{ABC}$, if $(a^2 +b^2)\sin(A-B)=(a^2-b^2)\sin(A+B)$, determine the shape of $\triangle{ABC}$.

Let $\triangle{ABC}$ be an acute triangle and $a, b, c$ be the three sides opposite to $\angle{A}, \angle{B}, \angle{C}$ respectively. If vectors $m=(a+c,b)$ and $n=(a-c, b-a)$ satisfy $m\cdot n = 0$, (1) Compute the measurement of $\angle{C}$. (2) Find the range of $\sin{A} + \sin{B}$.

In $\triangle{ABC}$, if $a\cos{C} + \frac{c}{2} = b$, (1) compute $\angle{A}$. (2) if $a=1$, find the range of the perimeter o f $\triangle{ABC}$.

Let $BD$ be a median in $\triangle{ABC}$. If $AB=\frac{4\sqrt{6}}{3}$, $\cos{B}=\dfrac{\sqrt{6}}{6}$, and $BD=\sqrt{5}$, find the length of $BC$ and the value of $\sin{A}$.


Let $ABCD$ be inscribed in a circle. If $AB=a, BC=b, CD=c,$ and $DA=d$, show that $$\cos{B} = \frac{a^2 + b^2 -c^2 - d^2}{2(ab+cd)}$$

There are four points on a plane as shown. Points $A$ and $B$ are fixed points satisfying $AB=\sqrt{3}$. Points $P$ and $Q$ can move, as long as $AP=PQ=QB=1$. Let $S$ and $T$ be the area of $\triangle{APB}$ and $\triangle{PQB}$, respectively. Find the maximum value of $S^2+T^2$.


Let $R=2$ be the circumradius of $\triangle{ABC}$. Compute the value of $$\frac{a+b+c}{\sin{A}+\sin{B}+\sin{C}}$$

Let $R=\frac{7\sqrt{3}}{3}$ be the circumradius of $\triangle{ABC}$. If $\angle{B} = 60^\circ$ and its area $S_{\triangle{ABC}}=10\sqrt{3}$, find the lengths of $a$, $b$, and $c$.

In isosceles right triangle $\triangle{ABC}$, $\angle{C}$ is the right angle. Points $D$ and $E$ are on side $AB$ such that $\angle{DCE}=45^\circ$, $AD=25$, and $EB=16$. Let the length of $DE$ be $x$. Find $x^2$.


Let $ABCD$ be a square. Points $E$ and $F$ are on its sides $BC$ and $CD$ such that $\angle{EAF}=45^\circ$. If point $G$ is on $EF$ such that $AG\perp EF$, show $AG=AD$.


Let $D$ be a point inside an isosceles triangle $\triangle{ABC}$ where $AB=AC$. If $\angle{ADB} > \angle{ADC}$, prove $DC > DB$.


Let $ABCD$ be a square. Points $E$ and $F$ are on side $CD$ and $BC$, respectively such that $AF$ bisects $\angle{EAB}$. Show that $AE=BE+DF$.