Practice (90/1000)

back to index  |  new

In the figure shown below, $ABCDE$ is a regular pentagon and $AG=1$. What is $FG + JH + CD$?


Let $n$ be a positive integer greater than $4$ such that the decimal representation of $n!$ ends in $k$ zeros and the decimal representation of $(2n)!$ ends in $3k$ zeros. Let $s$ denote the sum of the four least possible values of $n$. What is the sum of the digits of $s$?

Aaron the ant walks on the coordinate plane according to the following rules. He starts at the origin $p_0=(0,0)$ facing to the east and walks one unit, arriving at $p_1=(1,0)$. For $n=1,2,3,\dots$, right after arriving at the point $p_n$, if Aaron can turn $90^\circ$ left and walk one unit to an unvisited point $p_{n+1}$, he does that. Otherwise, he walks one unit straight ahead to reach $p_{n+1}$. Thus the sequence of points continues $p_2=(1,1), p_3=(0,1), p_4=(-1,1), p_5=(-1,0)$, and so on in a counterclockwise spiral pattern. What is $p_{2015}$?

A rectangular box measures $a \times b \times c$, where $a$, $b$, and $c$ are integers and $1\leq a \leq b \leq c$. The volume and the surface area of the box are numerically equal. How many ordered triples $(a,b,c)$ are possible?

As shown, the area of the rectangle $ABCD$ is 10. $E$, $F$, and $G$ are the midpoints of the respective sides. Find the sum of the two shaded areas.


If integer $a$, $b$, $c$, and $d$ satisfy $ad-bc=1$. Prove $a+b$ and $c+d$ are relatively prime.

Prove for any positive integer $n$, the fraction $\frac{21n+4}{14n+3}$ cannot be further simplified.

Prove: there exists a rational number $\frac{c}{d}$, where $d<1000$, such that $$\Big[k\cdot\frac{c}{d}\Big]=\Big[k\cdot\frac{73}{100}\Big]$$ holds for every positive integer $k$ that is less than 1000. Here $\Big[x\Big]$ denotes the largest integer that is not exceeding $x$.

Walking down Jane Street, Ralph passed four houses in a row, each painted a different color. He passed the orange house before the red house, and he passed the blue house before the yellow house. The blue house was not next to the yellow house. How many orderings of the colored houses are possible?

Nonzero real numbers $x$, $y$, $a$, and $b$ satisfy $x < a$ and $y < b$. How many of the following inequalities must be true? $\textbf{(I)}\ x+y < a+b\qquad$ $\textbf{(II)}\ x-y < a-b\qquad$ $\textbf{(III)}\ xy < ab\qquad$ $\textbf{(IV)}\ \frac{x}{y} < \frac{a}{b}$

Which of the following number is a perfect square?

The two legs of a right triangle, which are altitudes, have lengths $2\sqrt3$ and $6$. How long is the third altitude of the triangle?

Five positive consecutive integers starting with $a$ have average $b$. What is the average of $5$ consecutive integers that start with $b$?

A regular hexagon has side length 6. Congruent arcs with radius 3 are drawn with the center at each of the vertices, creating circular sectors as shown. The region inside the hexagon but outside the sectors is shaded as shown What is the area of the shaded region?


Equilateral $\triangle ABC$ has side length $1$, and squares $ABDE$, $BCHI$, $CAFG$ lie outside the triangle. What is the area of hexagon $DEFGHI$?


The $y$-intercepts, $P$ and $Q$, of two perpendicular lines intersecting at the point $A(6,8)$ have a sum of zero. What is the area of $\triangle APQ$?

In rectangle $ABCD$, $AB=1$, $BC=2$, and points $E$, $F$, and $G$ are midpoints of $\overline{BC}$, $\overline{CD}$, and $\overline{AD}$, respectively. Point $H$ is the midpoint of $\overline{GE}$. What is the area of the shaded region?


Three fair six-sided dice are rolled. What is the probability that the values shown on two of the dice sum to the value shown on the remaining die?

A square in the coordinate plane has vertices whose $y$-coordinates are $0$, $1$, $4$, and $5$. What is the area of the square?

Four cubes with edge lengths $1$, $2$, $3$, and $4$ are stacked as shown. What is the length of the portion of $\overline{XY}$ contained in the cube with edge length $3$?


Positive integers $a$ and $b$ are such that the graphs of $y=ax+5$ and $y=3x+b$ intersect the $x$-axis at the same point. What is the sum of all possible $x$-coordinates of these points of intersection?

In rectangle $ABCD$, $AB=20$ and $BC=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $AE$?

A rectangular piece of paper whose length is $\sqrt3$ times the width has area $A$. The paper is divided into three equal sections along the opposite lengths, and then a dotted line is drawn from the first divider to the second divider on the opposite side as shown. The paper is then folded flat along this dotted line to create a new shape with area $B$. What is the ratio $B:A$?


A sequence of natural numbers is constructed by listing the first $4$, then skipping one, listing the next $5$, skipping $2$, listing $6$, skipping $3$, and, on the $n$th iteration, listing $n+3$ and skipping $n$. The sequence begins $1,2,3,4,6,7,8,9,10,13$. What is the $500,\!000$th number in the sequence?

The number $5^{867}$ is between $2^{2013}$ and $2^{2014}$. How many pairs of integers $(m,n)$ are there such that $1\leq m\leq 2012$ and \[5^n<2^m<2^{m+2}<5^{n+1}?\]