USAMO
2012


Problem - 3432
For integer $n\geq2$, let $x_1, x_2, \ldots, x_n$ be real numbers satisfying \[x_1+x_2+\ldots+x_n=0, \qquad \text{and}\qquad x_1^2+x_2^2+\ldots+x_n^2=1.\]For each subset $A\subseteq\{1, 2, \ldots, n\}$, define\[S_A=\sum_{i\in A}x_i.\](If $A$ is the empty set, then $S_A=0$.) Prove that for any positive number $\lambda$, the number of sets $A$ satisfying $S_A\geq\lambda$ is at most $2^{n-3}/\lambda^2$. For which choices of $x_1, x_2, \ldots, x_n, \lambda$ does equality hold?

report an error