Practice (Intermediate)

back to index  |  new

Prove: randomly select $51$ numbers from $1$, $2$, $3$, $\dots$, $100$, there must exist two numbers for which one is a multiple of the other.

Joe wants to measure $6$ liter water using just two containers whose capacities are $27$ liters and $15$ liters, respectively. Can you help him?

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

A rectangle with positive integer side lengths in $\text{cm}$ has area $A$ $\text{cm}^2$ and perimeter $P$ $\text{cm}$. Which of the following numbers cannot equal $A+P$?

Let $n$ be a positive integer greater than $4$ such that the decimal representation of $n!$ ends in $k$ zeros and the decimal representation of $(2n)!$ ends in $3k$ zeros. Let $s$ denote the sum of the four least possible values of $n$. What is the sum of the digits of $s$?

A rectangular box measures $a \times b \times c$, where $a$, $b$, and $c$ are integers and $1\leq a \leq b \leq c$. The volume and the surface area of the box are numerically equal. How many ordered triples $(a,b,c)$ are possible?

Prove: if $(2^n+1)$ is a prime number, then $n$ must be some power of 2.

If $2^n-1$ is a prime number, prove $n$ must be a prime number too.

What is the hundreds digit of $2011^{2011}?$

Each face of a cube is given a single narrow stripe painted from the center of one edge to the center of the opposite edge. The choice of the edge pairing is made at random and independently for each face. What is the probability that there is a continuous stripe encircling the cube?

Two subsets of the set $S=\{ a,b,c,d,e\}$ are to be chosen so that their union is $S$ and their intersection contains exactly two elements. In how many ways can this be done, assuming that the order in which the subsets are chosen does not matter?


Let $k={2008}^{2}+{2}^{2008}$. What is the units digit of $k^2+2^k$?

How many pairs of positive integers (a,b) are there such that $a$ and $b$ have no common factors greater than 1 and: $\frac{a}{b} + \frac{14b}{9a}$ is an integer?

Two farmers agree that pigs are worth $300$ dollars and that goats are worth $210$ dollars. When one farmer owes the other money, he pays the debt in pigs or goats, with "change" received in the form of goats or pigs as necessary. (For example, a $390$ dollar debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way?

How many positive integers $n$ satisfy the following condition: $(130n)^{50} > n^{100} > 2^{200}$?

How many collections of six positive, odd integers have a sum of $18$? Note that $1 + 1 + 1 + 3 + 3 + 9$ and $9 + 1 + 3 + 1 + 3 + 1$ are considered to be the same collection.


Farmer Hank has fewer than $100$ pigs on his farm. If he groups the pigs five to a pen, there are always three pigs left over. If he groups the pigs seven to a pen, there is always one pig left over. However, if he groups the pigs three to a pen, there are no pigs left over. What is the greatest number of pigs that Farmer Hank could have on his farm?

In how many ways can $18$ be written as the sum of four distinct positive integers?

Five red lines and three blue lines are drawn on a plane. Given that $x$ pairs of lines of the same color intersect and $y$ pairs of lines of different colors intersect, find the maximum possible value of $(y - x)$.

A solitaire game is played with $8$ red, $9$ green, and $10$ blue cards. Totoro plays each of the cards exactly once in some order, one at a time. When he plays a card of color $c$, he gains a number of points equal to the number of cards that are not of color $c$ in his hand. Find the maximum number of points that he can obtain by the end of the game.

A hand of four cards of the form $(c, c, c + 1, c + 1)$ is called a $tractor$. Vinjai has a deck consisting of four of each of the numbers $7$, $8$, $9$ and $10$. If Vinjai shuffles and draws four cards from his deck, compute the probability that they form a tractor.

Chad has $100$ cookies that he wants to distribute among four friends. Two of them, Jeff and Qiao, are rivals; neither wants the other to receive more cookies than they do. The other two, Jim and Townley, don't care about how many cookies they receive. In how many ways can Chad distribute all $100$ cookies to his four friends so that everyone is satisfied? (Some of his four friends may receive zero cookies.)

How many length ten strings consisting of only $A$s and $B$s contain neither "$BAB$" nor "$BBB$" as a substring?


Let $z$ be a complex number, and $|z|=1$. Find the maximal value of $u=|z^3-3z+2|$.

Let positive real number $x$, $y$, and $z$ satisfy $x+y+z=1$. Find the minimal value of $u=\sqrt{x^2 + y^2 + xy} + \sqrt{y^2 +z^2 +yz} +\sqrt{z^2 +x^2 + xz}$