Practice (5)

back to index  |  new

Given three identical $n$- faced dice whose corresponding faces are identically numbered with arbitrary integers. Prove that if they are tossed at random, the probability that the sum of the bottom three face numbers is divisible by three is greater than or equal to $\frac{1}{4}$.

Show how to construct a chord $BPC$ of a given angle $A$ through a given point $P$ such that $\frac{1}{BP}+ \frac{1}{PC}$ is a maximum.

A certain organization has $n$ members, and it has $n+1$ three-member committees, no two of which have identical member-ship. Prove that there are two committees which share exactly one member.

A two-pan balance is innacurate since its balance arms are of different lengths and its pans are of different weights. Three objects of different weights $A$, $B$, and $C$ are each weighed separately. When placed on the left-hand pan, they are balanced by weights $A_1$, $B_1$, and $C_1$, respectively. When $A$ and $B$ are placed on the right-hand pan, they are balanced by $A_2$ and $B_2$, respectively. Determine the true weight of $C$ in terms of $A_1, B_1, C_1, A_2$, and $B_2$.

Determine the maximum number of three-term arithmetic progressions which can be chosen from a sequence of $n$ real numbers \[a_1

Let $F_r=x^r\sin{rA}+y^r\sin{rB}+z^r\sin{rC}$, where $x,y,z,A,B,C$ are real and $A+B+C$ is an integral multiple of $\pi$. Prove that if $F_1=F_2=0$, then $F_r=0$ for all positive integral $r$.

The inscribed sphere of a given tetrahedron touches all four faces of the tetrahedron at their respective centroids. Prove that the tetrahedron is regular.

Prove that for numbers $a,b,c$ in the interval $[0,1]$, \[\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}+(1-a)(1-b)(1-c) \le 1.\]

The measure of a given angle is $\frac{180^{\circ}}{n}$ where $n$ is a positive integer not divisible by $3$. Prove that the angle can be trisected by Euclidean means (straightedge and compasses).

Every pair of communities in a county are linked directly by one mode of transportation; bus, train, or airplane. All three methods of transportation are used in the county with no community being serviced by all three modes and no three communities being linked pairwise by the same mode. Determine the largest number of communities in this county.

If $A,B,C$ are the angles of a triangle, prove that \[-2 \le \sin{3A}+\sin{3B}+\sin{3C} \le \frac{3\sqrt{3}}{2}\] and determine when equality holds.

The sum of the measures of all the face angles of a given complex polyhedral angle is equal to the sum of all its dihedral angles. Prove that the polyhedral angle is a trihedral angle. $\mathbf{Note:}$ A convex polyhedral angle may be formed by drawing rays from an exterior point to all points of a convex polygon.

If $x$ is a positive real number, and $n$ is a positive integer, prove that \[[ nx] > \frac{[ x]}1 + \frac{[ 2x]}2 +\frac{[ 3x]}3 + \cdots + \frac{[ nx]}n,\] where $[t]$ denotes the greatest integer less than or equal to $t$. For example, $[ \pi] = 3$ and $\left[\sqrt2\right] = 1$.

In a party with $1982$ persons, among any group of four there is at least one person who knows each of the other three. What is the minimum number of people in the party who know everyone else.

Let $X_r=x^r+y^r+z^r$ with $x,y,z$ real. It is known that if $S_1=0$, $(*) $ $\frac{S_{m+n}}{m+n}=\frac{S_m}{m}\frac{S_n}{n}$ for $(m,n)=(2,3),(3,2),(2,5)$, or $(5,2)$. Determine all other pairs of integers $(m,n)$ if any, so that $(*)$ holds for all real numbers $x,y,z$ such that $x+y+z=0$.

If a point $A_1$ is in the interior of an equilateral triangle $ABC$ and point $A_2$ is in the interior of $\triangle{A_1BC}$, prove that $I.Q. (A_1BC) > I.Q.(A_2BC)$, where the isoperrimetric quotient of a figure $F$ is defined by $I.Q.(F) = \frac{\text{Area (F)}}{\text{[Perimeter (F)]}^2}$

Prove that there exists a positive integer $k$ such that $k\cdot2^n+1$ is composite for every integer $n$.

$A,B$, and $C$ are three interior points of a sphere $S$ such that $AB$ and $AC$ are perpendicular to the diameter of $S$ through $A$, and so that two spheres can be constructed through $A$, $B$, and $C$ which are both tangent to $S$. Prove that the sum of their radii is equal to the radius of $S$.

On a given circle, six points $A$, $B$, $C$, $D$, $E$, and $F$ are chosen at random, independently and uniformly with respect to arc length. Determine the probability that the two triangles $ABC$ and $DEF$ are disjoint, i.e., have no common points.

Prove that the roots of\[x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0\] cannot all be real if $2a^2 < 5b$.

Each set of a finite family of subsets of a line is a union of two closed intervals. Moreover, any three of the sets of the family have a point in common. Prove that there is a point which is common to at least half the sets of the family.

Six segments $S_1, S_2, S_3, S_4, S_5,$ and $S_6$ are given in a plane. These are congruent to the edges $AB, AC, AD, BC, BD,$ and $CD$, respectively, of a tetrahedron $ABCD$. Show how to construct a segment congruent to the altitude of the tetrahedron from vertex $A$ with straight-edge and compasses.

Consider an open interval of length $1/n$ on the real number line, where $n$ is a positive integer. Prove that the number of irreducible fractions $p/q$, with $1\le q\le n$, contained in the given interval is at most $(n+1)/2$.

The product of two of the four roots of the quartic equation $x^4 - 18x^3 + kx^2+200x-1984=0$ is $-32$. Determine the value of $k$.

The geometric mean of any set of $m$ non-negative numbers is the $m$-th root of their product. $\quad (\text{i})\quad$ For which positive integers $n$ is there a finite set $S_n$ of $n$ distinct positive integers such that the geometric mean of any subset of $S_n$ is an integer? $\quad (\text{ii})\quad$ Is there an infinite set $S$ of distinct positive integers such that the geometric mean of any finite subset of $S$ is an integer?