Practice (40)

back to index  |  new

291
Rectangle $ABCD$ and a semicircle with diameter $AB$ are coplanar and have nonoverlapping interiors. Let $\mathcal{R}$ denote the region enclosed by the semicircle and the rectangle. Line $\ell$ meets the semicircle, segment $AB$, and segment $CD$ at distinct points $N$, $U$, and $T$, respectively. Line $\ell$ divides region $\mathcal{R}$ into two regions with areas in the ratio $1: 2$. Suppose that $AU = 84$, $AN = 126$, and $UB = 168$. Then $DA$ can be represented as $m\sqrt {n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m + n$.

293
In $\triangle{ABC}$ with $AB = 12$, $BC = 13$, and $AC = 15$, let $M$ be a point on $\overline{AC}$ such that the incircles of $\triangle{ABM}$ and $\triangle{BCM}$ have equal radii. Let $p$ and $q$ be positive relatively prime integers such that $\frac {AM}{CM} = \frac {p}{q}$. Find $p + q$.

302
Let $ABCDEF$ be a regular hexagon. Let $G$, $H$, $I$, $J$, $K$, and $L$ be the midpoints of sides $AB$, $BC$, $CD$, $DE$, $EF$, and $AF$, respectively. The segments $\overline{AH}$, $\overline{BI}$, $\overline{CJ}$, $\overline{DK}$, $\overline{EL}$, and $\overline{FG}$ bound a smaller regular hexagon. Let the ratio of the area of the smaller hexagon to the area of $ABCDEF$ be expressed as a fraction $\frac {m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

305
Two noncongruent integer-sided isosceles triangles have the same perimeter and the same area. The ratio of the lengths of the bases of the two triangles is $8: 7$. Find the minimum possible value of their common perimeter.

307
Triangle $ABC$ with right angle at $C$, $\angle BAC < 45^\circ$ and $AB = 4$. Point $P$ on $\overline{AB}$ is chosen such that $\angle APC = 2\angle ACP$ and $CP = 1$. The ratio $\frac{AP}{BP}$ can be represented in the form $p + q\sqrt{r}$, where $p$, $q$, $r$ are positive integers and $r$ is not divisible by the square of any prime. Find $p+q+r$.

308
In triangle $ABC$, $AC = 13$, $BC = 14$, and $AB=15$. Points $M$ and $D$ lie on $AC$ with $AM=MC$ and $\angle ABD = \angle DBC$. Points $N$ and $E$ lie on $A$B with $AN=NB$ and $\angle ACE = \angle ECB$. Let $P$ be the point, other than $A$, of intersection of the circumcircles of $\triangle AMN$ and $\triangle ADE$. Ray $AP$ meets $BC$ at $Q$. The ratio $\frac{BQ}{CQ}$ can be written in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m-n$.

332

In $\bigtriangleup ABC$, $D$ is a point on side $\overline{AC}$ such that $BD=DC$ and $\angle BCD$ measures $70^\circ$. What is the degree measure of $\angle ADB$? 



337

Rectangle $ABCD$ and right triangle $DCE$ have the same area. They are joined to form a trapezoid, as shown. What is $DE$?



338

The circumference of the circle with center $O$ is divided into 12 equal arcs, marked the letters $A$ through $L$ as seen below. What is the number of degrees in the sum of the angles $x$ and $y$?



344

Rectangle $ABCD$ has sides $CD=3$ and $DA=5$. A circle of radius $1$ is centered at $A$, a circle of radius $2$ is centered at $B$, and a circle of radius $3$ is centered at $C$. Which of the following is closest to the area of the region inside the rectangle but outside all three circles?



354

A collection of circles in the upper half-plane, all tangent to the $x$-axis, is constructed in layers as follows. Layer $L_0$ consists of two circles of radii $70^2$ and $73^2$ that are externally tangent. For $k\ge1$, the circles in $\bigcup_{j=0}^{k-1}L_j$ are ordered according to their points of tangency with the $x$-axis. For every pair of consecutive circles in this order, a new circle is constructed externally tangent to each of the two circles in the pair. Layer $L_k$ consists of the $2^{k-1}$ circles constructed in this way. Let $S=\bigcup_{j=0}^{6}L_j$, and for every circle $C$ denote by $r(C)$ its radius. What is \[\sum_{C\in S} \frac{1}{\sqrt{r(C)}}?\] 



362
On a sheet of paper, Isabella draws a circle of radius $2$, a circle of radius $3$, and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly $k \ge 0$ lines. How many different values of $k$ are possible?

363
The parabolas $y=ax^2 - 2$ and $y=4 - bx^2$ intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area $12$. What is $a+b$?

371
Isosceles triangles $T$ and $T'$ are not congruent but have the same area and the same perimeter. The sides of $T$ have lengths $5$, $5$, and $8$, while those of $T'$ have lengths $a$, $a$, and $b$. Which of the following numbers is closest to $b$?

372
A circle of radius r passes through both foci of, and exactly four points on, the ellipse with equation $x^2+16y^2=16.$ The set of all possible values of $r$ is an interval $[a,b).$ What is $a+b?$

383
A regular 15-gon has $L$ lines of symmetry, and the smallest positive angle for which it has rotational symmetry is $R$ degrees. What is $L+R$ ?

391
Quadrilateral $ABCD$ is inscribed in a circle with $\angle BAC=70^{\circ}, \angle ADB=40^{\circ}, AD=4,$ and $BC=6$. What is $AC$?

392
A circle of radius 2 is centered at $A$. An equilateral triangle with side 4 has a vertex at $A$. What is the difference between the area of the region that lies inside the circle but outside the triangle and the area of the region that lies inside the triangle but outside the circle?

394
A regular hexagon with sides of length 6 has an isosceles triangle attached to each side. Each of these triangles has two sides of length 8. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid?

397
In $\triangle ABC$, $\angle C = 90^\circ$ and $AB = 12$. Squares $ABXY$ and $ACWZ$ are constructed outside of the triangle. The points $X$, $Y$, $Z$, and $W$ lie on a circle. What is the perimeter of the triangle?

402
Four circles, no two of which are congruent, have centers at $A$, $B$, $C$, and $D$, and points $P$ and $Q$ lie on all four circles. The radius of circle $A$ is $\tfrac{5}{8}$ times the radius of circle $B$, and the radius of circle $C$ is $\tfrac{5}{8}$ times the radius of circle $D$. Furthermore, $AB = CD = 39$ and $PQ = 48$. Let $R$ be the midpoint of $\overline{PQ}$. What is $AR+BR+CR+DR$ ?

403
A bee starts flying from point $P_0$. She flies $1$ inch due east to point $P_1$. For $j \ge 1$, once the bee reaches point $P_j$, she turns $30^{\circ}$ counterclockwise and then flies $j+1$ inches straight to point $P_{j+1}$. When the bee reaches $P_{2015}$ she is exactly $a \sqrt{b} + c \sqrt{d}$ inches away from $P_0$, where $a$, $b$, $c$ and $d$ are positive integers and $b$ and $d$ are not divisible by the square of any prime. What is $a+b+c+d$ ?

406

In equilateral triangle $ABC$, shown here, each downward pointing black triangle has its vertices at the midpoints of the sides of a larger upward pointing white triangle. What fraction of the area of $DABC$ is white? Express your answer as a common fraction.



407
What is the greatest possible perimeter of an isosceles triangle with sides of length $5x + 20$, $3x + 76$ and $x + 196$?

410
The line perpendicular to $2x -2y = 2$, and with the same $y$-intercept, is graphed on the coordinate plane. What is the sum of its $x$- and $y$-intercepts?