Sequence IMO

back to index

Find the maximal value of $m^2+n^2$ if $m$ and $n$ are integers between $1$ and $1981$ satisfying $(n^2-mn-m^2)^2=1$.

Let sequence $\{a_n\}$ satisfy $a_0=0, a_1=1$, and $a_n = 2a_{n-1}+a_{n-2}$. Show that $2^k\mid n$ if and only if $2^k\mid a_n$.

Let $\{a_n\}$ be a sequence defined as $a_n=\lfloor{n\sqrt{2}}\rfloor$ where $\lfloor{x}\rfloor$ indicates the largest integer not exceeding $x$. Show that this sequence has infinitely many square numbers.


Let sequence $g(n)$ satisfy $g(1)=0, g(2)=1, g(n+2)=g(n+1)+g(n)+1$ where $n\ge 1$. Show that if $n$ is a prime greater than 5, then $n\mid g(n)[g(n)+1]$.

If a sequence $\{a_n\}$ satisfies $a_1=1$ and $a_{n+1}=\frac{1}{16}\big(1+4a_n+\sqrt{1+24a_n}\big)$, find the general term of $a_n$.

In a sports contest, there were $m$ medals awarded on $n$ successive days ($n > 1$). On the first day, one medal and $1/7$ of the remaining $m − 1$ medals were awarded. On the second day, two medals and $1/7$ of the now remaining medals were awarded; and so on. On the $n^{th}$ and last day, the remaining $n$ medals were awarded. How many days did the contest last, and how many medals were awarded altogether?

For each integer $a_0 >$ 1, define the sequence $a_0, a_1, a_2, \cdots$ by: $$ a_{n+1} = \left\{ \begin{array}{ll} \sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer}\\ a_n + 3 & \text{otherwise} \end{array} \right. $$ For all $n \ge 0$. Determine all values of $a_0$ for which there is a number $A$ such that $a_n = A$ for infinitely many values of $n$.


Find all numbers $n \ge 3$ for which there exists real numbers $a_1, a_2, ..., a_{n+2}$ satisfying $a_{n+1} = a_1, a_{n+2} = a_2$ and\[a_{i}a_{i+1} + 1 = a_{i+2}\]for $i = 1, 2, ..., n.$

back to index