Inequality IMO

back to index

3027   
(Weitzenbock's Inequality) Let $a, b, c$, and $S$ be a triangle's three sides' lengths and its area, respectively. Show that $$a^2 + b^2 + c^2 \ge 4\sqrt{3}\cdot S$$

3218   
Let ${{a}_{2}}, {{a}_{3}}, \cdots, {{a}_{n}}$ be positive real numbers that satisfy ${{a}_{2}}\cdot {{a}_{3}}\cdots {{a}_{n}}=1$ . Prove that $$(a_2+1)^2\cdot (a_3+1)^3\cdots (a_n+1)^n\ge n^n$$

3404   
Let $n\ge 3$ be an integer, and let $a_2,a_3,\ldots ,a_n$ be positive real numbers such that $a_{2}a_{3}\cdots a_{n}=1$. Prove that \[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\] Proposed by Angelo Di Pasquale, Australia

back to index