Number Theory - Modular Arithmetic

Learn to solve this type of problems, not just this problem!

——arn
(1) Let integer a, b, and c satisfy $a+b+c=0$, show that $6 \mid a^{2017}+b^{2017}+c^{2017}$.
(2) Suppose two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are defined as

$$
x_{1}=1, x_{2}=1, x_{n+1}=x_{n}+2 x_{n-1}
$$

and

$$
y_{1}=7, y_{2}=17, y_{n+1}=2 y_{n}+3 y_{n-1}
$$

Show that no term in $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ will be equal.
(3) Find the last three digits of 7^{10000} and 7^{9999}.
(4) Find the last three digits of $9+9^{2}+9^{3}+\cdots+9^{2000}$.
(5) Find the remainder when $10^{10}+10^{100}+10^{1000}+\cdots+10^{\overbrace{0}^{2017}}$ is divided by 7 .
(6) Let $p>3$ be a prime and

$$
\frac{a}{b}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{(p-1)^{2}}
$$

Show that a is a multiple of p.
(7) Solve the following equation in integers:

$$
x_{1}^{4}+x_{2}^{4}+\cdots+x_{14}^{4}=9999
$$

(8) Show that from any given m integers $a_{1}, a_{2}, \cdots, a_{m}$, it is always possible to select one or more integers so that their sum is a multiple of m.
(9) Show that among all seven-digit integers which are created by using all of $1,2, \cdots, 7$, none of them can be a multiple of another one.
(10) Find all powers of 2 , such that after deleting its first digit, the new number is also a power of 2. For example, 32 is such a number because $32=2^{5}$ and $2=2^{1}$.
(11) Find the remainder when $30!$ is divided by 899 .
(12) Show that for any positive integer n, there exist n consecutive integers each of which contains at least one square divisor greater than 1 .

