Competition Algebra

- (1) Let a and b be the two roots of $x^2 + x + 1 = 0$. Evaluate $a^2 + b^2$. Try to find at least three different solutions without solving the equation directly.
- (2) Let x_1 and x_2 be two roots of $x^2 x 1 = 0$. Find the value of $2x_1^5 + 5x_2^3$.
- (3) Let α and β be two real roots of $x^4 + k = 3x^2$ and also satisfy $\alpha + \beta = 2$. Find the value of k.
- (4) Compute the value of

$$\sqrt[3]{2 + \frac{10}{3\sqrt{3}}} + \sqrt[3]{2 - \frac{10}{3\sqrt{3}}}$$

and simplify

$$\sqrt[3]{2 + \frac{10}{3\sqrt{3}}}$$
 and $\sqrt[3]{2 - \frac{10}{3\sqrt{3}}}$

- (5) Solve this equation $x^4 + 2x^3 3x^2 4x + 3 = 0$.
- (6) Solve this equation $(6x + 7)^2(3x + 4)(x + 1) = 6$.
- (7) If all roots of the equation

$$x^{4} - 16x^{3} + (81 - 2a)x^{2} + (16a - 142)x + (a^{2} - 21a + 68) = 0$$

are integers, find the value of a and solve this equation.

- (8) Let x be a positive number. Denote by $\lfloor x \rfloor$ the integer part of x and by $\{x\}$ the decimal part of x. Find the sum of all positive numbers satisfying $5\{x\} + 0.2\lfloor x \rfloor = 25$.
- (9) Is it possible to construct 12 geometric sequences to contain all the prime numbers between 1 and 100?
- (10) Suppose α and β be two real roots of x² px + q = 0 where p and q ≠ 0 are two real numbers. Let sequence {a_n} satisfies a₁ = p, a₂ = p² q, and a_n = pa_{n-1} qa_{n-2} for n > 2.
 i) Express a_n using α and β.
 - ii) If p = 1 and $q = \frac{1}{4}$, find the sum of first *n* terms of $\{a_n\}$.
- (11) If real number x satisfies $x^4 2x^3 7x^2 + 8x + 12 \le 0$, find the maximum value of $|x + \frac{4}{x}|$.
- (12) Solve the following system in integers:

$$\begin{cases} x_1 + x_2 + \dots + x_n &= n \\ x_1^2 + x_2^2 + \dots + x_n^2 &= n \\ \dots & \\ x_1^n + x_2^n + \dots + x_n^n &= n \end{cases}$$