Competition Algebra

Learn to solve this type of problems, not just this problem!
(1) Let a and b be the two roots of $x^{2}+x+1=0$. Evaluate $a^{2}+b^{2}$. Try to find at least three different solutions without solving the equation directly.
(2) Let x_{1} and x_{2} be two roots of $x^{2}-x-1=0$. Find the value of $2 x_{1}^{5}+5 x_{2}^{3}$.
(3) Let α and β be two real roots of $x^{4}+k=3 x^{2}$ and also satisfy $\alpha+\beta=2$. Find the value of k.
(4) Compute the value of

$$
\sqrt[3]{2+\frac{10}{3 \sqrt{3}}}+\sqrt[3]{2-\frac{10}{3 \sqrt{3}}}
$$

and simplify

$$
\sqrt[3]{2+\frac{10}{3 \sqrt{3}}} \text { and } \sqrt[3]{2-\frac{10}{3 \sqrt{3}}}
$$

(5) Solve this equation $x^{4}+2 x^{3}-3 x^{2}-4 x+3=0$.
(6) Solve this equation $(6 x+7)^{2}(3 x+4)(x+1)=6$.
(7) If all roots of the equation

$$
x^{4}-16 x^{3}+(81-2 a) x^{2}+(16 a-142) x+\left(a^{2}-21 a+68\right)=0
$$

are integers, find the value of a and solve this equation.
(8) Let x be a positive number. Denote by $\lfloor x\rfloor$ the integer part of x and by $\{x\}$ the decimal part of x. Find the sum of all positive numbers satisfying $5\{x\}+0.2\lfloor x\rfloor=25$.
(9) Is it possible to construct 12 geometric sequences to contain all the prime numbers between 1 and 100 ?
(10) Suppose α and β be two real roots of $x^{2}-p x+q=0$ where p and $q \neq 0$ are two real numbers. Let sequence $\left\{a_{n}\right\}$ satisfies $a_{1}=p, a_{2}=p^{2}-q$, and $a_{n}=p a_{n-1}-q a_{n-2}$ for $n>2$.
i) Express a_{n} using α and β.
ii) If $p=1$ and $q=\frac{1}{4}$, find the sum of first n terms of $\left\{a_{n}\right\}$.
(11) If real number x satisfies $x^{4}-2 x^{3}-7 x^{2}+8 x+12 \leq 0$, find the maximum value of $\left|x+\frac{4}{x}\right|$.
(12) Solve the following system in integers:

$$
\left\{\begin{array}{cl}
x_{1}+x_{2}+\cdots+x_{n} & =n \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =n \\
\cdots & \\
x_{1}^{n}+x_{2}^{n}+\cdots+x_{n}^{n} & =n
\end{array}\right.
$$

