Geometry

Triangle Basic

http://www.mathallstar.org

Triangle Basic

Instructions

- Write down and submit intermediate steps along with your final answer.
- If the final result is too complex to compute, give the expression. e.g. C_{100}^{50} is acceptable.
- Problems are not necessarily ordered based on their difficulty levels.
- Always ask yourself what makes this problem a good practice?
- Read through the reference solution even if you can solve the problem for additional information which may help you to solve this type of problems.

Legends

(i) Tips, additional information etc
(2) Important theorem, conclusion to remember.
(1) Addition questions for further study.

My Comments and Notes

Reference

You may need to use the following theorem(s) and conclusion(s) in this practice:

Theorem 0.0.1 Stewart Theorem

Given a triangle as shown on the right where each letter represents the length of a corresponding segment, then

$$
b^{2} m+c^{2} n=a\left(d^{2}+m n\right)
$$

Triangle Basic

Practice 1

In $\triangle A B C, \angle C$ is a right angle. Let D be the middle point of $A B$. Show that $C D=\frac{1}{2} \cdot A B$.

Practice 2

In $\triangle A B C, \angle C$ is a right angle. Let D be the foot of the altitude drawn from C on $A B$. Show that:
(i) $C D=\frac{A C \cdot B C}{A B}=\frac{A C \cdot B C}{\sqrt{A C^{2}+B C^{2}}}$
(ii) $C D^{2}=A D \cdot B D$
(iii) $A C^{2}=A D \cdot A B$ and $B C^{2}=B D \cdot A B$

Practice 3

Let a, b, and c be the lengths of two legs and the hypotenuse of a right triangle respectively.
Let r be the radius of this triangle's inscribed circle. Show that

$$
r=\frac{a+b-c}{2}
$$

Practice 4

(Apollonius Theorem) Given $\triangle A B C$ and median $A D$, show that

$$
A B^{2}+A C^{2}=2\left(A D^{2}+B D \cdot C D\right)
$$

Practice 5

(Extended Pythagorean Theorem) Let $\triangle A B C$ be a right triangle where $\angle C=90^{\circ}$. If point D is on side $B C$ or its extension, show that

$$
A B^{2}=D B^{2}+D A^{2} \pm 2 \cdot D B \cdot D C
$$

If D is on $B C$, then the $3^{r d}$ term above takes a positive coefficient. If D is on $B C$'s extension, the $3^{r d}$ term takes a negative coefficient.

Practice 6

(Angle Bisector Theorem) In $\triangle A B C$, let D be the foot of $\angle A$ bisector on $B C$. Show that

$$
\frac{A B}{B D}=\frac{A C}{C D}
$$

Practice 7

Let $\triangle A B C$ be an isosceles triangle where $A B=A C$. Show that for any point P on the base $B C$ or its extension, the following relationship holds:

$$
A P^{2}=A B \cdot A C \pm B P \cdot P C
$$

Triangle Basic

Practice 8

In equiangular hexagon $A B C D E F$, if $A B+B C=11$ and $F A-C D=3$, compute $B C+D E$.
(Ref 2904: 1994 China Beijing)

Practice 9

(Civa's Theorem) Given a triangle $A B C$, let the lines $A O, B O$ and $C O$ be drawn from the vertices to a common point O to meet opposite sides at D, E and F respectively. (The segments $A D, B E$, and $C F$ are known as cevians.) Then, show the following equation holds:

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

Practice 10

(Menelaus' theorem) Given a triangle ABC, and a transversal line that crosses $B C, A C$ and $A B$ (or their extended segment) at points D, E and F respectively, with D, E, and F distinct from A, B and C, show that

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=-1
$$

(Note: the negative 1 assumes the length of a segment is signed, e.g. $A B=-B A$. If this is confusing to you, simply assume the length is always positive, and then to prove the product equals 1.)

Reference Solutions

Triangle Basic

- Practice 1

In $\triangle A B C, \angle C$ is a right angle. Let D be the middle point of $A B$. Show that $C D=\frac{1}{2} \cdot A B$.

There are several different ways to prove this:
Method 1: Find a point D^{\prime} on $A B$ such that $A D^{\prime}=C D^{\prime}$. This means $\angle A=\angle A C D^{\prime}$. It follows that $\angle B C D^{\prime}=90^{\circ}-\angle A C D^{\prime}=90^{\circ}-\angle A=\angle B$. Hence we find $\triangle C D^{\prime} B$ is isosceles where $B D^{\prime}=C D^{\prime}$, or

$$
D^{\prime} C=A D^{\prime}=D^{\prime} B \Longrightarrow D^{\prime} \text { is the middle point of } A B, \text { i.e. } D, \text { and } C D=\frac{1}{2} \cdot A B
$$

Method 2: Draw a circle which is centered at D with a radius of $A D=D B$. Because $\angle C$ is a right angle, point C must locate on this circle. Hence $C D$ must equal to this circle's radius which is half of $A B$.

Method 3: By the Steward theorem, we have

$$
C A^{2} \cdot D B+C B^{2} \cdot A D=A B \cdot\left(C D^{2}+A D \cdot D B\right)
$$

Triangle Basic

Note that $A D=B D=\frac{1}{2} \cdot A B$ and $C A^{2}+C B^{2}=A B^{2}$ (Pythagorean theorem):

$$
\begin{aligned}
C A^{2} \cdot D B+C B^{2} \cdot A D & =A B \cdot\left(C D^{2}+A D \cdot D B\right) \\
C A^{2}+C B^{2} & =2 \cdot\left(C D^{2}+A D \cdot D B\right) \\
A B^{2} & =2 \cdot C D^{2}+2 \cdot\left(\frac{1}{2} \cdot A B\right)\left(\frac{1}{2} \cdot A B\right) \\
A B^{2} & =2 \cdot C D^{2}+\frac{1}{2} \cdot A B^{2} \\
A B^{2} & =4 \cdot C D^{2} \\
A B & =2 \cdot C D
\end{aligned}
$$

Practice 2

In $\triangle A B C, \angle C$ is a right angle. Let D be the foot of the altitude drawn from C on $A B$. Show that:
(i) $C D=\frac{A C \cdot B C}{A B}=\frac{A C \cdot B C}{\sqrt{A C^{2}+B C^{2}}}$
(ii) $C D^{2}=A D \cdot B D$
(iii) $A C^{2}=A D \cdot A B$ and $B C^{2}=B D \cdot A B$

It is always helpful to draw a correct diagram when solving a geometry problem.

Figure 1:

Triangle Basic

(i) This can be proved using the area method. Let S be the area of $\triangle A B C$. We use two different ways to compute S :
$\operatorname{method} 1: \quad A C \perp B C \Longrightarrow S=\frac{1}{2} \cdot A C \cdot B C$
method 2: $\quad A B \perp C D \Longrightarrow S=\frac{1}{2} \cdot A B \cdot C D$
Therefore it must hold that $\frac{1}{2} \cdot A C \cdot B C=\frac{1}{2} \cdot A B \cdot C D$, or

$$
C D=\frac{A C \cdot B C}{A B}=\frac{A C \cdot B C}{\sqrt{A C^{2}+B C^{2}}}
$$

The $2^{n d}$ equality above is based on the Pythagorean theorem.
(i) Tip: This presents one way to compute length of the altitude $C D$ using the side lengths.
(ii) This can be proved using similar triangles.

Because $\angle A C D=90^{\circ}-\angle D C B=\angle C B D$, and $90^{\circ}=\angle A D C=\angle C D B$, we have

$$
\triangle A D C \sim \triangle C D B
$$

Therefore

$$
\frac{A D}{C D}=\frac{C D}{D B} \quad \text { or } \quad C D^{2}=A D \cdot B D
$$

(i) Tip: This presents another way to compute the altitude from the right angle.
(iii) This can be proved using similar triangles.

Because $\angle A C D=90^{\circ}-\angle D C B=\angle C B D$, and $90^{\circ}=\angle A D C=\angle A C B$, we have

$$
\triangle A D C \sim \triangle A C B
$$

Therefore

$$
\frac{A C}{A D}=\frac{A B}{A C} \quad \text { or } \quad A C^{2}=A D \cdot A B
$$

The other formula can be proved in a similar way.
(i) Tip: We can view $A D$ as the projection of the side $A C$ on the hypotenuse $A B$. This formula relates lengths of the side, its projection, and the hypotenuse.

Quiz: How many similar triangles are there in Figure 1?

Triangle Basic

Practice 3

Let a, b, and c be the lengths of two legs and the hypotenuse of a right triangle respectively. Let r be the radius of this triangle's inscribed circle. Show that

$$
r=\frac{a+b-c}{2}
$$

This can be proved using the area method (please check out the area method practice). Here we provide another solution.

Let D, E, and F be the points of tangency, respectively. Then we have $A D=A F, B F=B E$, and $C D=C E$. Because $\angle C=90^{\circ}$, it is easy to see that $C D I E$ is a square. Hence:
$2 r=C E+C D=(a-B E)+(b-A D)=a+b-(B E+A D)=a+b-(B F+A F)=a+b-c$
or

$$
r=\frac{a+b-c}{2}
$$

(i) Tip: If the given triangle is not a right triangle, we can still obtain the in-radius formula by employing the area method.

Practice 4

(Apollonius Theorem) Given $\triangle A B C$ and median $A D$, show that

$$
A B^{2}+A C^{2}=2\left(A D^{2}+B D \cdot C D\right)
$$

By the Stewart Theorem, we have

$$
A B^{2} \cdot C D+A C^{2} \cdot B D=B C \cdot\left(A D^{2}+B D \cdot C D\right)
$$

Note that $B D=C D=\frac{1}{2} \cdot B C$, the above relationship can be simplified to:

$$
A B^{2}+A C^{2}=2\left(A D^{2}+B C \cdot C D\right)
$$

Practice 5

(Extended Pythagorean Theorem) Let $\triangle A B C$ be a right triangle where $\angle C=90^{\circ}$. If point D is on side $B C$ or its extension, show that

$$
A B^{2}=D B^{2}+D A^{2} \pm 2 \cdot D B \cdot D C
$$

If D is on $B C$, then the $3^{r d}$ term above takes a positive coefficient. If D is on $B C$'s extension, the $3^{\text {rd }}$ term takes a negative coefficient.

Case 1: when D is on segment $B C$

Apply the Pythagorean theorem on $\triangle A B C$ and $\triangle A D C$, respectively:

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2} \\
& D A^{2}=A C^{2}+D C^{2}
\end{aligned}
$$

Canceling $A C^{2}$ leads to:

$$
\begin{aligned}
A B^{2} & =D A^{2}+B C^{2}-D C^{2} \\
& =D A^{2}+(D B+D C)^{2}-D C^{2} \\
& =D B^{2}+D A^{2}+2 \cdot D B \cdot D C
\end{aligned}
$$

Case 2: when D is on the extension of $B C$

Still apply the Pythagorean theorem on $\triangle A B C$ and $\triangle A D C$, respectively:

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2} \\
& D A^{2}=A C^{2}+D C^{2}
\end{aligned}
$$

Canceling $A C^{2}$ leads to:

$$
\begin{aligned}
A B^{2} & =D A^{2}+B C^{2}-D C^{2} \\
& =D A^{2}+(D C-D B)^{2}-D C^{2} \\
& =D B^{2}+D A^{2}-2 \cdot D B \cdot D C
\end{aligned}
$$

Quiz: Draw a diagram when D is on the other side extension of $B C$, and provide a proof.

Practice 6

(Angle Bisector Theorem) In $\triangle A B C$, let D be the foot of $\angle A$ bisector on $B C$. Show that

$$
\frac{A B}{B D}=\frac{A C}{C D}
$$

Extending $A D$ to point E such that $A C=C E$. It follows that $\angle C E D=\angle C A D=\angle D A B$. Note that $\angle C D E=\angle B D A$, then $\triangle A B D \sim \triangle E C D$. Hence

$$
\frac{A B}{B D}=\frac{C E}{C D}
$$

By construction, we have $C E=A C$. Therefore the claim holds.

Practice 7

Let $\triangle A B C$ be an isosceles triangle where $A B=A C$. Show that for any point P on the base $B C$ or its extension, the following relationship holds:

$$
A P^{2}=A B \cdot A C \pm B P \cdot P C
$$

Case 1: when P is on the segment $B C$.

By the Steward theorem, we have:

$$
A B^{2} \cdot P C+A C^{2} \cdot B P=B C \cdot\left(A P^{2}+B P \cdot P C\right)
$$

Note $A B=A C$ and $(P C+B P)=B C$, we have

$$
\begin{aligned}
A B^{2} \cdot P C+A C^{2} \cdot B P & =B C \cdot\left(A P^{2}+B P \cdot P C\right) \\
A B^{2} \cdot(P C+B P) & =B C \cdot\left(A P^{2}+B P \cdot P C\right) \\
A B^{2} & =A P^{2}+B P \cdot P C \\
A P^{2} & =A B^{2}-B P \cdot P C \\
A P^{2} & =A B \cdot A C-B P \cdot P C
\end{aligned}
$$

Practice 8

In equiangular hexagon $A B C D E F$, if $A B+B C=11$ and $F A-C D=3$, compute $B C+D E$. (Ref 2904: 1994 China Beijing)

Extending sides $A F, B C$, and $D E$ so that they intersect at X, Y, and Z, respectively.
(i) Tip: When an equiangular hexagon is involved, try to construct an equilateral triangle from it.

Because $A B C D E F$ is equiangular, every inner angle equals 120°. It follows that the three corner triangles, $X A B, C D Z$, and $F Y E$ are all equilateral. Furthermore, the big triangle $X Y Z$ is also equilateral.

Now it is just a straightforward computation in order to solve the given problem:

$$
\begin{aligned}
B C+D E & =C Z+D Y \\
& =Y Z-D C \\
& =X Z-D C \\
& =(X A+A B+B Z)-D C \\
& =(F A+A B+B C)-D C \\
& =(F A-D C)+(A B+B C) \\
& =3+11 \\
& =14
\end{aligned}
$$

Practice 9

(Civa's Theorem) Given a triangle $A B C$, let the lines $A O, B O$ and $C O$ be drawn from the vertices to a common point O to meet opposite sides at D, E and F respectively. (The segments $A D, B E$, and $C F$ are known as cevians.) Then, show the following equation holds:

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

This problem can be solved using pure geometry approach. Here we present another approach which utilizes a physical concept: center of mass.

Triangle Basic

(i) Tip: The center of mass method is a powerful tool to solve cevians related problems.

The objective is to place some proportional weights at the vertices A, B, and C, respectively, such that point O is the center of mass of these three weights. Then we can apply the balance condition to derive our results.

Let's place weights u, v, and w at point A, B, and C, respectively such that:

$$
u \cdot A F=v \cdot B F \quad \text { and } \quad u \cdot A E=w \cdot C E
$$

By the center of mass equation, we know F is the center of mass of the two weights u and v. Similarly, E is the center of mass of the two weights u and w.

Therefore, the intersection point of $B E$ and $C F$, or point O, must be the center of mass of these three weights. It follows that D must be center of mass of weights v and w, or

$$
v \cdot B D=w \cdot C D
$$

Now, we have

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=\frac{v}{u} \cdot \frac{w}{v} \cdot \frac{u}{w}=1
$$

(i) Tip: To correctly remember the numerator and denominator of each of these three terms, we can start from any of the three vertices and write down all the segments in turn clockwise (or anti-clockwise).

Triangle Basic

- Practice 10

(Menelaus' theorem) Given a triangle ABC , and a transversal line that crosses $B C, A C$ and $A B$ (or their extended segment) at points D, E and F respectively, with D, E, and F distinct from A, B and C, show that

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=-1
$$

(Note: the negative 1 assumes the length of a segment is signed, e.g. $A B=-B A$. If this is confusing to you, simply assume the length is always positive, and then to prove the product equals 1.)
(i) Tip: This theorem can also be proved using the center of mass method. When the desired center of mass lies outside the two weights, we can assume one weight is negative. Conceptually, a positive wight is equivalent to pushing down, and a negative weight is equivalent to pulling up.)

Quiz: Try to prove this theorem using the center of mass method.
Here, we are going to prove this theorem using a pure geometry approach.
Let's draw three perpendicular lines from vertices A, B, C towards the transversal line, and let their feet be G, H, and I, respectively.

Triangle Basic

Therefore, we have

$$
\begin{gathered}
\triangle A F G \sim \triangle B F H \Longrightarrow \frac{A F}{F B}=\frac{A G}{H B} \\
\triangle B D H \sim \triangle C D E \Longrightarrow \frac{B D}{D C}=\frac{B H}{I C} \\
\triangle C I E \sim \triangle A G E \Longrightarrow \frac{C E}{E A}=\frac{C I}{G A}
\end{gathered}
$$

Multiplying both sides of the above three relationship gives us the desired result.
(i) Tip: In this proof, the transversal line intersects two sides $A B$ and $A C$, but intersects the $3^{\text {rd }}$ side $B C$ on its extension. Note that the Menelaus theorem will still hold if the line DF intersects more than one side on their extensions.
?
Quiz: Draw a diagram when DF intersects all the three sides on their extensions, and then apply a similar method to prove it.

Battle Field

Selective problems from recent comptitions:

Problem 1: 2015 MathCounts State Team \#7 (Ref 541)
Problem 2: 2014 AMC10A \#14 (Ref 1293)
Problem 3: 2012 MathCounts State Sprint \#21 (Ref 1923)
Problem 4: \quad 2010AMC12A \#17 (Ref 660)
Problem 5: $\quad 2009$ AMC10A \#10 (Ref 1544)
Problem 6: 2005 AMC10B \#10 (Ref 1769)

