Vieta's Formula

Vieta's Theorem

\longrightarrow Describes the relation between a polynomial's roots and its coefficients
\square
A must-master technique
\longrightarrow The key is NOT to solve the equation directly

Quadratic Vieta’s Formula

Let x_{1} and x_{2} be the two roots of quadratic equation $a x^{2}+b x+c=0$, then

$$
x_{1}+x_{2}=-\frac{b}{a} \quad x_{1} \cdot x_{2}=\frac{c}{a}
$$

A simple but silly proof

$$
\left\{\begin{array} { l }
{ x _ { 1 } = \frac { - b + \sqrt { b ^ { 2 } - 4 a c } } { 2 a } } \\
{ x _ { 2 } = \frac { - b - \sqrt { b ^ { 2 } - 4 a c } } { 2 a } }
\end{array} \longleftrightarrow \left\{\begin{array}{l}
x_{1}+x_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=-\frac{b}{a} \\
x_{1} \cdot x_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \cdot \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{c}{a}
\end{array}\right.\right.
$$

Another Proof

example

Find a quadratic equation whose roots are 1 and 2 .
Solution: $(x-1)(x-2)=0 \Longrightarrow k(x-1)(x-2)=0$, where $k \neq 0$.

$$
x^{2}-3 x+2=0 \quad \Longleftrightarrow \quad 1+2=3 \quad \text {, } 1 \times 2=2
$$

Vieta's Formula
Let x_{1} and x_{2} be two roots of quadratic equation $a x^{2}+b x+c=0$, then $x_{1}+x_{2}=-\frac{b}{a}, x_{1} x_{2}=\frac{c}{a}$.

$$
\begin{aligned}
& a x^{2}+b x+c=0 \Longleftrightarrow a\left(x-x_{1}\right)\left(x-x_{2}\right)=0 \\
&\left\{\begin{array}{l}
b=-a\left(x_{1}+x_{2}\right) \\
c=a x_{1} x_{2}
\end{array} \Longleftrightarrow a x^{2}-a\left(x_{1}+x_{2}\right) x+a x_{1} x_{2}=0\right. \\
& \Longleftrightarrow\left\{\begin{array}{c}
x_{1}+x_{2}=-\frac{b}{a} \\
x_{1} \cdot x_{2}=\frac{c}{a} \quad \text { Why is this proof better? }
\end{array}\right.
\end{aligned}
$$

Example

Let x_{1} and x_{2} be two roots of quadratic equation $x^{2}-3 x+2=0$.
(1) Find the value of $x_{1}^{2}+x_{2}^{2}$.

Expression containing roots
(2) Find a quadratic equation whose roots are x_{1}^{2} and x_{2}^{2}.

Equation construction
(3) Find the value of $\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}$.

More expression
(4) Write a recurrence relation for sequence $y_{n}=x_{1}^{n}+x_{2}^{n}$.

Advanced topic
(5) Find the value of $x_{1}^{3}+x_{2}^{3}$.

More expression

The key is NOT to solve the roots!

The simple equation given in this example is for illustration purpose so you can easily check your result.

Example Solution

Let x_{1} and x_{2} be two roots of quadratic equation $x^{2}-3 x+2=0$.
(1) Find the value of $x_{1}^{2}+x_{2}^{2}$

Expression containing roots

$$
x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=(3)^{2}-2 \times(2)=5
$$

Convert the target expression to $\left(x_{1}+x_{2}\right)$ and $\left(x_{1} \cdot x_{2}\right)$ using polynomial transformation.

Example Solution

Let x_{1} and x_{2} be two roots of quadratic equation $x^{2}-3 x+2=0$.
(2) Find a quadratic equation whose roots are x_{1}^{2} and x_{2}^{2}.

It is equivalent to finding the value of $x_{1}^{2}+x_{2}^{2}$ and $x_{1}^{2} x_{2}^{2}$. Why?

$$
\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=(3)^{2}-2 \times(2)=5 \\
x_{1}^{2} x_{2}^{2}=\left(x_{1} x_{2}\right)^{2}=(2)^{2}=4
\end{array}\right.
$$

\therefore one desired equation is $x^{2}-5 x+4=0$.

Example Solution

Let x_{1} and x_{2} be two roots of quadratic equation $x^{2}-3 x+2=0$.
(3) Find the value of $\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}$.

Solution 1:

$$
\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}=\frac{\left(x_{2}+1\right)+\left(x_{1}+1\right)}{\left(x_{1}+1\right)\left(x_{2}+1\right)}=\frac{\left(x_{1}+x_{2}\right)+2}{x_{1} x_{2}+\left(x_{1}+x_{2}\right)+1}=\frac{3+2}{2+3+1}=\frac{5}{6}
$$

Solution 2:
x_{1} and x_{2} are the roots of

$$
x^{2}-3 x+2=0
$$

$$
(x-1)^{2}-3(x-1)+2=0 \text { or } x^{2}-5 x+6=0
$$

-4. $\frac{1}{x_{1}+1}$ and $\frac{1}{x_{2}+1}$ are the roots of

$$
\left(\frac{1}{x}\right)^{2}-5\left(\frac{1}{x}\right)+6=0 \text { or } 6 x^{2}-5 x+1=0
$$

$$
\therefore \frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}=-\left(\frac{-5}{6}\right)=\frac{5}{6}
$$

Example Solution

Let x_{1} and x_{2} be two roots of quadratic equation $x^{2}-3 x+2=0$.
(4) Write a recurrence relation for sequence $y_{n}=x_{1}^{n}+x_{2}^{n}$.

The answer is: $y_{n+2}-3 y_{n+1}+2 y_{n}=0$, and $y_{0}=2$ and $y_{1}=3$.

This is because

$$
\begin{aligned}
& x_{1}^{2}-3 x_{1}+2=0 \\
& x_{2}^{2}-3 x_{2}+2=0 \xlongequal[\text { multiply } x_{1}^{n}]{\Longrightarrow} x_{1}^{n+2}-3 x_{1}^{n+1}+2 x_{1}^{n}=0 \\
& \text { multiply } x_{2}^{n} x_{2}^{n+2}-3 x_{2}^{n+1}+2 x_{2}^{n}=0 \\
&\left(x_{1}^{n+2}+x_{2}^{n+2}\right)-3\left(x_{1}^{n+1}+x_{2}^{n+1}\right)+2\left(x_{1}^{n}+x_{2}^{n}\right)=0 \\
& y_{n+2}-3 y_{n+1}+2 y_{n}=0
\end{aligned}
$$

Example

Let x_{1} and x_{2} be two roots of quadratic equation $x^{2}-3 x+2=0$.
(5) Find the value of $x_{1}^{3}+x_{2}^{3}$.

More expression

Solution 1:

$$
x_{1}^{3}+x_{2}^{3}=\left(x_{1}+x_{2}\right)^{3}-3 x_{1} x_{2}\left(x_{1}+x_{2}\right)=(3)^{3}-3 \times(2) \times(3)=9
$$

Solution 2:

$$
\begin{aligned}
& \text { Let } y_{n}=x_{1}^{n}+x_{2}^{n} \text {, then } y_{n+2}-3 y_{n+1}+2 y_{n}=0, \text { or } y_{n+2}=3 y_{n+1}-2 y_{n} . \\
& y_{0}=x_{1}^{0}+x_{2}^{0}=2 \\
& y_{1}=x_{1}^{1}+x_{2}^{1}=3 \text { by Vieta's theorem } \\
& \Rightarrow y_{2}=3 y_{1}-2 y_{0}=3 \times 3-2 \times 2=5 \\
& \Rightarrow y_{3}=3 y_{2}-2 y_{1}=3 \times 5-2 \times 3=9
\end{aligned}
$$

$n^{t h}$ Degree Equation Vieta's Formula

Let x_{1}, \cdots, x_{n} be the roots of equation $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$, then

$$
\left\{\begin{array}{c}
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+x_{3}+\cdots+x_{n}=-a_{n-1} \\
\sum_{i \neq j} x_{i} x_{j}=x_{1} x_{2}+\cdots+x_{1} x_{n}+x_{2} x_{3}+\cdots=a_{n-2} \\
\cdots \\
x_{1} x_{2} x_{3} \cdots x_{n-1} x_{n}=(-1)^{n} a_{0}
\end{array}\right.
$$

$\left\{\begin{array}{ccc}\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+x_{3}+\cdots+x_{n}=-a_{n-1} & \text { expression } & \text { number of terms } \\ \sum_{i \neq j} x_{i} x_{j}=x_{1} x_{2}+\cdots+x_{1} x_{n}+x_{2} x_{3}+\cdots=a_{n-2} & \text { sum of products of } 2 \text { roots } & C_{n}^{2} \\ x_{1} x_{2} x_{3} \cdots x_{n-1} x_{n}=(-1)^{n} a_{0} & C_{n}^{n}=1\end{array}\right.$

