Indeterminate Equation

Assessment

http://www.mathallstar.org

Indeterminate Equation

Instructions

- Write down and submit intermediate steps along with your final answer.
- If the final result is too complex to compute, give the expression. e.g. C_{100}^{50} is acceptable.
- Problems are not necessarily ordered based on their difficulty levels.
- Always ask yourself what makes this problem a good one to practise?
- Complete the My Record section below before submission.

My Comments and Notes

Indeterminate Equation

Practice 1

Find all ordered integer pairs (x, y) such that $x+x y+y=8$.

Practice 2

Solve in integers the equation $41 x+37 y=13$.

Practice 3

Solve in positive integers the following equations:
(i) $\frac{1}{x}+\frac{1}{y}=\frac{1}{3}$
(ii) $\frac{1}{x}+\frac{1}{y}=\frac{5}{6}$
(iii) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{5}$

Practice 4

Solve the equation $x^{2}+y^{2}=6 x-4 y-13$.

Practice 5

How many ordered integer pairs (x, y) are there such that $5\left(x^{2}+3\right)=y^{2}$?

Practice 6

Find all the right triangles that satisfy the following two conditions:
(i) the lengths of all its three sides are integers, and
(ii) its area and perimeter are numerically equal

Indeterminate Equation

Practice 7

Solve in positive integers the equation $y^{2}=x^{2}+x+1$.

Practice 8

Find all pairs of positive integers (x, y) where x and y are relatively prime, such that the following expression is an integer:

$$
\frac{x}{y}+\frac{15 y}{4 x}
$$

Practice 9

Solve in integers the equation: $x^{2}+y^{2}=2015$.

Practice 10

Find all positive integer triplets (x, y, z) such that $3^{x}+4^{y}=5^{z}$.

Practice 11

Solve in integers the equation $x^{3}+2 y^{3}=4 z^{3}$.

Practice 12

Find all the triangles whose sides are three consecutive integers and areas are also integers.

Reference Solutions

Indeterminate Equation

- Practice 1

Find all ordered integer pairs (x, y) such that $x+x y+y=8$.
?ٌT Tip: The factorization method and integer divisibility.
Solution 1: Polynomial Factorization
The given equation can be re-written as:

$$
(x+1)(y+1)=9
$$

Because both x and y are integers, both $(x+1)$ and $(y+1)$ are integers too. It follows that they must be paired divisors of 9 :

$x+1$	$y+1$	x	y
1	9	0	8
3	3	2	2
9	1	8	0
-1	-9	-2	-10
-3	-3	-4	-4
-9	-1	-10	-2

Therefore we conclude there are totally 6 solutions.
Solution 2: Integer Divisibility
Rearrange the given equation as an equation with respect to $x:(y+1) x=8-y$. Hence:

$$
\begin{equation*}
x=\frac{8-y}{y+1}=\frac{9-(1+y)}{y+1}=\frac{9}{y+1}-1 \tag{1}
\end{equation*}
$$

Because x is an integer, $\frac{9}{y+1}$ must be an integer. This follows that $(y+1)$ must be a divisor of 9, or

$$
\begin{aligned}
y+1 & =-9,-3,-1,1,3,9 \\
y & =-10,-4,-2,0,2,8
\end{aligned}
$$

Setting these values to Equation 1, respectively, leads to

$$
x=-2,-4,-10,8,2,0
$$

Indeterminate Equation

Practice 2

Solve in integers the equation $41 x+37 y=13$.

O- Tip: The Euclidean method, and the $a x+b y=1$ and $a x+b y=c$ patterns.
First, let's solve

$$
\begin{equation*}
41 x+37 y=1 \tag{2}
\end{equation*}
$$

This can be done by the Euclidean method. We have

$$
\begin{aligned}
& 41=37 \times 1+4 \\
& 37=4 \times 9+1
\end{aligned}
$$

Therefore

$$
1=37-4 \times 9=37-(41-37 \times 1) \times 9=-41 \times 9+37 \times 10
$$

This means Equation 2 has one solution $(-9,10)$, and its general solution is given by:

$$
\left\{\begin{array}{l}
x=-9+37 t \tag{3}\\
y=10-41 t
\end{array}\right.
$$

where t is an integer parameter.
It follows that

$$
\begin{cases}x=-9 \times 13+37 \times 13 t & =-117+481 t \tag{4}\\ y=10 \times 13-41 \times 13 t & =130-533 t\end{cases}
$$

is the solution to the original question $41 x+37 y=13$.

Practice 3

Solve in positive integers the following equations:
(i) $\frac{1}{x}+\frac{1}{y}=\frac{1}{3}$
(ii) $\frac{1}{x}+\frac{1}{y}=\frac{5}{6}$
(iii) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{5}$

Indeterminate Equation

(i)
?ٌ. Tip: The factorization method, and the $\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$ pattern.
The given equation can be rewritten as $(x-3)(y-3)=9$. Therefore both $(x-3)$ and $(y-3)$ must be divisors of 16 . Without loss of generality, let's assume $x-3 \geq y-3$. This follows that one of the following must hold:

$$
\left\{\begin{array} { l }
{ x - 3 = 9 } \\
{ y - 3 = 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x-3=3 \\
y-3=3
\end{array}\right.\right.
$$

Solving these two systems lead to $(x, y)=(12,4),(6,6)$. Hence all the solutions are

$$
(x, y)=(12,4),(6,6),(4,12)
$$

(ii)
\because Ọ- Tip: The inequality method, and the $\frac{1}{x}+\frac{1}{y}=\frac{m}{n}$ pattern.
By symmetry, let's assume $x \leq y$. Hence

$$
\frac{1}{x} \geq \frac{1}{y}
$$

It follows that,

$$
\begin{equation*}
\frac{1}{x} \geq \frac{1}{2} \times \frac{5}{6}=\frac{5}{12} \tag{5}
\end{equation*}
$$

or $x \leq 2$.
Testing $x=1,2$ respectively finds $(2,3)$ is one solution. Therefore all the solutions to the given equations are

$$
(x, y)=(2,3),(3,2)
$$

Quiz: Can you use this method to solve (i) above?
(iii)
?. Tip: The inequality method, and the $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{m}{n}$ pattern.
By the symmetrical argument, let's assume $0<x \leq y \leq z$. It follows:

$$
\frac{1}{x}<\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \leq \frac{3}{x}
$$

Indeterminate Equation

Then $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{5} \Longrightarrow \frac{1}{x}<\frac{3}{5} \leq \frac{3}{x} \Longrightarrow 2 \leq x \leq 5$.
Now we proceed with casework:
If $x=2$, then $\frac{1}{y}+\frac{1}{z}=\frac{3}{5}-\frac{1}{2}=\frac{1}{10}$.
If $x=3$, then $\frac{1}{y}+\frac{1}{z}=\frac{3}{5}-\frac{1}{3}=\frac{4}{15}$.
If $x=4$, then $\frac{1}{y}+\frac{1}{z}=\frac{3}{5}-\frac{1}{4}=\frac{7}{20}$.
If $x=5$, then $\frac{1}{y}+\frac{1}{z}=\frac{3}{5}-\frac{1}{5}=\frac{2}{5}$.
The equivalent equation in every case is in the form of:

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{n} \quad \text { or } \quad \frac{1}{x}+\frac{1}{y}=\frac{m}{n}
$$

They can all be solved by using the techniques that are presented in (i) and (ii) above. Solving these equations leads to the following solutions under the assumption $0<x \leq y \leq z$.
$(2,11,110),(2,12,60),(2,14,35),(2,15,30),(2,20,20),(3,4,60),(3,5,15),(3,6,10),(4,4$, $10)$, and $(5,5,5)$.

Therefore, all the solutions are just distinct permutations of the above set.

- Practice 4

Solve the equation $x^{2}+y^{2}=6 x-4 y-13$.

ొٌ. Tip: The sum of square method.
The given equation is equivalent to:

$$
(x-3)^{2}+(y+2)^{2}=0
$$

Because squares cannot be negative, the only possibility to make this equation hold is $(x, y)=(3,-2)$.

Indeterminate Equation

- Practice 5

How many ordered integer pairs (x, y) are there such that $5\left(x^{2}+3\right)=y^{2}$?

?' Tip: Property of square numbers.

It is obvious that $\left(x^{2}+3\right)$ must be a multiple of 5 . It follows that the unit digit of $\left(x^{2}+3\right)$ must be either 0 or 5 . Equivalently, x^{2} must end with 8 or 3 . However no square number can end with 8 or 3 . Hence this equation is not solvable.

Practice 6

Find all the right triangles that satisfy the following two conditions:
(i) the lengths of all its three sides are integers, and
(ii) its area and perimeter are numerically equal
?乌․ Tip: The Pythagorean triplet formula.
By the Pythagorean triplet formula, the lengths of three sides can be written as:

$$
\left\{\begin{array}{l}
x=m^{2}-n^{2} \\
y=2 m n \\
z=m^{2}+n^{2}
\end{array}\right.
$$

where m and n are two positive integers.
If its area and perimeter equal in values, the following must hold:

$$
\frac{1}{2}\left(m^{2}-n^{2}\right)(2 m n)=\left(m^{2}-n^{2}\right)+2 m n+\left(m^{2}+n^{2}\right)
$$

It follows that:

$$
\begin{aligned}
\left(m^{2}-n^{2}\right)(m n) & =2 m^{2}+2 m n \\
(m+n)(m-n) m n & =2 m(m+n) \\
(m-n) n & =2
\end{aligned}
$$

Indeterminate Equation

This is a basic indeterminate equation that can be solved using the factorization method.

$$
\left\{\begin{array} { r l }
{ m - n } & { = 1 } \\
{ n } & { = 2 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
m-n & =2 \\
n & =1
\end{array}\right.\right.
$$

We find $(m, n)=(3,2)$ or $(3,1)$.
Setting these values into the Pythagorean triplet formula produces two such triangles: 5-12-13 and 6-8-10.

- Practice 7

Solve in positive integers the equation $y^{2}=x^{2}+x+1$.
?ٌ Tip: The squeeze method.
From the given equation and the condition $x>0$, it is easy to see that

$$
y^{2}<x^{2}<(x+1)^{2}
$$

Note that x and $(x+1)$ are two consecutive integers. Therefore it is impossible to have another integer whose square is between x^{2} and $(x+1)^{2}$.

Hence, we conclude that no solution is possible.

Practice 8

Find all pairs of positive integers (x, y) where x and y are relatively prime, such that the following expression is an integer:

$$
\frac{x}{y}+\frac{15 y}{4 x}
$$

?ٌ․ Tip: The quadratic method.

Let $u=\frac{x}{y}$, then the given problem is equivalent to:

$$
u+\frac{15}{4 u}=k
$$

where k is an integer. It is obvious that u is a positive rational number because both x and y are positive integers.

Indeterminate Equation

Rewriting this relationship leads to:

$$
\begin{equation*}
4 u^{2}-4 k u+15=0 \tag{6}
\end{equation*}
$$

Because Equation 6 is solvable in rational number, its discriminant must be a square number. Let

$$
\Delta=16 k^{2}-4 \times 4 \times 15=n^{2}
$$

where n is an integer. Or:

$$
16 k^{2}-n^{2}=240
$$

Clearly, n^{2} is a multiple of $16=4^{2}$, setting $n=4 m$ leads to:

$$
\begin{align*}
16 k^{2}-16 m^{2} & =240 \\
k^{2}-m^{2} & =15 \\
(k+m)(k-m) & =15 \tag{7}
\end{align*}
$$

Equation 7 can be solved by the factorization method. Because both k and m are positive integers, we have $k+m>k-m$. Consequently, one of the two systems must hold:

$$
\left\{\begin{array} { l }
{ k + m = 1 5 } \\
{ k - m = 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
k+m=5 \\
k-m=3
\end{array}\right.\right.
$$

Solving the above two systems leads to

$$
(k, m)=(8,7),(4,1)
$$

Setting $k=8$ to the quadratic formula of Equation 6:

$$
u=\frac{4 \times 8 \pm \sqrt{(4 \times 8)^{2}-4 \times 4 \times 15}}{2 \times 4}=4 \pm \frac{7}{2}=\frac{15}{2}, \frac{1}{2}
$$

Setting $k=4$ leads:

$$
u=\frac{4 \times 4 \pm \sqrt{(4 \times 4)^{2}-4 \times 4 \times 15}}{2 \times 4}=2 \pm \frac{1}{2}=\frac{5}{2}, \frac{3}{2}
$$

Therefore, we conclude there are four solutions:

$$
(x, y)=(15,2),(1,2),(5,2) \text { and }(3,2)
$$

Indeterminate Equation

- Practice 9

Solve in integers the equation: $x^{2}+y^{2}=2015$.
?'
Tip: Number theory / Frequently used MOD conclusions.
Taking MOD 4 on both sides leads to

$$
x^{2}+y^{2}=2015 \equiv 3 \quad(\bmod 4)
$$

However this relationship cannot hold. Therefore the original equation is not solvable in integers.

Practice 10

Find all positive integer triplets (x, y, z) such that $3^{x}+4^{y}=5^{z}$.

Ọ- Tip: The MOD method

First, let's show x, y, and z must be all even.
Taking $(\bmod 4)$ on both sides of the equation leads to:

$$
(-1)^{x}+0 \equiv 1^{z} \quad(\bmod 4)
$$

Clearly, this relationship can only hold if x is even.
Next, taking $(\bmod 3)$ on both sides yields:

$$
0+1^{y} \equiv(-1)^{z} \quad(\bmod 3)
$$

Therefore, z must be even too.
As such, let $x=2 k, z=2 p$, and note $4^{y}=\left(2^{y}\right)^{2}$, the original equation becomes:

$$
\left(3^{k}\right)^{2}+\left(2^{y}\right)^{2}=\left(5^{p}\right)^{2}
$$

Therefore $\left(3^{k}, 2^{y}, 5^{p}\right)$ forms a Pythagorean triplet. Hence, there exist positive integers m and n such that ${ }^{1}$:

$$
\left\{\begin{array}{l}
3^{k}=m^{2}-n^{2} \\
2^{y}=2 m n \\
5^{p}=m^{2}+n^{2}
\end{array}\right.
$$

[^0]
Indeterminate Equation

Because $2^{y}=2 m n$, both m and n must be some power of 2 . Let $m=2^{t}$ and $n=2^{s}$ where t and s are non-negative integers satisfying $t+s=y-1$. Note $m>n \Longrightarrow t>s$.

It follows that:

$$
\left\{\begin{array}{l}
3^{k}=m^{2}-n^{2}=2^{2 t}-2^{2 s}=2^{2 s}\left(2^{2(t-s)}-1\right) \\
5^{p}=m^{2}+n^{2}=2^{2 t}+2^{2 s}=2^{2 s}\left(2^{2(t-s)}+1\right)
\end{array}\right.
$$

Because neither 3^{k} nor 5^{p} is divisible by 2 , we conclude $2^{2 s}$ must equal 1 . This means $s=0$, and $2^{2(t-s)}=4$ or $t=1$. It is followed by $k=p=1$.

Hence, the given equation has only one positive integer solution: $x=y=z=2$.

Practice 11

Solve in integers the equation $x^{3}+2 y^{3}=4 z^{3}$.
"O- Tip: The infinite descent method.
If there exists such a positive integer solution (x, y, z), then x must be even. Let $x=2 x_{1}$:

$$
\begin{aligned}
\left(2 x_{1}\right)^{3}+2 y^{3} & =4 z^{3} \\
4 x_{1}^{3}+y^{3} & =2 z^{3}
\end{aligned}
$$

This means y must be even too. Let $y=2 y_{1}$:

$$
\begin{aligned}
4 x_{1}^{3}+\left(2 y_{1}\right)^{3} & =2 z^{3} \\
2 x_{1}^{3}+4 y_{1}^{3} & =z^{3}
\end{aligned}
$$

This in turn shows z is also even. Let be $z=2 z_{1}$:

$$
\begin{aligned}
2 x_{1}^{3}+4 y_{1}^{3} & =\left(2 z_{1}\right)^{3} \\
x_{1}^{3}+2 y_{1}^{3} & =4 z_{1}^{3}
\end{aligned}
$$

This last equation is in the same form of the original one. Hence, we conclude if (x, y, z) is a positive integer solution, x, y, and z must be all even, and $\left(x_{1}, y_{1}, z_{1}\right)=\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)$ will be a solution too. It is clear that the process of $(x, y, z) \Longrightarrow\left(x_{1}, y_{1}, z_{1}\right)$ is repeatable. Therefore an infinitive decreasing solution series can be constructed, which is impossible by the principle of infinite descent. Thus, the equation is unsolvable in positive integers.

Indeterminate Equation

- Practice 12

Find all the triangles whose sides are three consecutive integers and areas are also integers.
棠
Tip: The Pell's equation.
Let three sides' lengths be $z-1, z$, and $z+1$, respectively. Then by the Heron's formula, the triangle's area is given by:

$$
\begin{align*}
S & =\sqrt{\frac{3}{2} z \times\left(\frac{3}{2} z-(z-1)\right)\left(\frac{3}{2} z-z\right)\left(\frac{3}{2} z-(z+1)\right)} \\
& =\frac{z}{4} \sqrt{3\left(z^{2}-4\right)} \tag{8}
\end{align*}
$$

If S is an integer, then $3\left(z^{2}-4\right)$ must be a square number. Let

$$
3\left(z^{2}-4\right)=3 w^{2}
$$

In addition, from Equation 8, it is clear that z must be even because, otherwise, both z and $\sqrt{3\left(z^{2}-4\right)}$ will be odd. This will make S a non-integer.

Letting $z=2 x$ leads to $4 x^{2}-4=3 w^{2}$. This means that w must be even too. Letting $w=2 y$ and simplifying yield:

$$
x^{2}-3 y^{2}=1
$$

This is a Pell's equation. Its fundamental solution is

$$
(x, y)=(2,1)
$$

and general solution is given by:

$$
\left\{\begin{array}{l}
x_{n}=\frac{(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}}{2} \tag{9}\\
y_{n}=\frac{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}{2 \sqrt{3}}
\end{array}\right.
$$

As a result, there exist infinitely many such triangles. Three sides are $\left(2 x_{n}-1,2 x_{n},, 2 x_{n}+1\right)$ where x_{n} is given by Equation 9, and area is $3 \cdot x_{n} \cdot y_{n}$.

The three smallest such triangles can be obtained by setting $n=1,2$, and 3 , respectively:

$$
(3,4,5),(13,14,15),(51,52,53)
$$

Indeterminate Equation

Answer Keys

Practice 1: $\quad(x, y)=(0,8),(8,0),(2,2),(-2,-10),(-10,-2),(-4,-4)$
Practice 2:

$$
\left\{\begin{array}{l}
x=-9 \times 13+37 \times 13 t=-117+481 t \\
y=10 \times 13-41 \times 13 t=130-533 t
\end{array}\right.
$$

where t is an integer parameter.
Practice 3:
(i) $(x, y)=(2,3),(3,2)$
(ii) $(x, y)=(12,4),(6,6),(4,12)$
(iii) Permutation of the following sets: $(2,11,110),(2,12,60),(2,14,35),(2,15$, $30),(2,20,20),(3,4,60),(3,5,15),(3,6,10),(4,4,10)$, and $(5,5,5)$.

Practice 4: $\quad(x, y)=(3,-2)$
Practice 5: No solution exists.
Practice 6: $\quad 5-12-13$ and 6-8-10.
Practice 7: No solution exits.
Practice 8: $\quad(x, y)=(15,2),(1,2),(5,2)$ and $(3,2)$
Practice 9: No solution exits.
Practice 10: $\quad(x, y, z)=(2,2,2)$
Practice 11: No solution exits.
Practice 12: There exist infinitely many such triangles. Refer to the reference solution.

[^0]: ${ }^{1}$ Note $3{ }^{k}$ is an odd number. Therefore it cannot equal $2 m n$

