The Inequality (Squeeze) Method

Learn how to solve this type of problems, not just this problem.

1. Solve this equation in integers: $y^{2}=x^{2}+x+1$.
2. Solve in integers the equation $y^{2}=x^{4}+x^{3}+x^{2}+x+1$.
(Ref Ref 2081)
3. Solve in integers the equation

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{5}
$$

(Ref Ref 2084: Romania Olympiad)
4. Solve in positive integers the equation

$$
3(x y+y z+z x)=4 x y z
$$

(Ref Ref 2243: Putname)
5. A rectangular box measures $a \times b \times c$, where a, b, and c are integers and $1 \leq a \leq b \leq c$. The volume and the surface area of the box are numerically equal. How many ordered triples (a, b, c) are possible?
(Ref Ref 401: 2015 AMC12B \#23)
6. Solve in integers the equation

$$
(x+y)^{2}=x^{3}+y^{3}
$$

(Ref Ref 2359)
7. How many ordered triples of integers (a, b, c), with $a \geq 2, b \geq 1$, and $c \geq 0$, satisfy both $\log _{a} b=c^{2005}$ and $a+b+c=2005 ?$
(Ref Ref 914: 2005 AMC12A \#21)
8. Find all integers a, b, c with $1<a<b<c$ such that the number $(a-1)(b-1)(c-1)$ is a divisor of $a b c-1$.
(Ref Ref 2240: 1992 IMO)
9. Find all positive integers n and $k_{i}(1 \leq i \leq n)$ such that

$$
k_{1}+k_{2}+\cdots+k_{n}=5 n-4
$$

and

$$
\frac{1}{k_{1}}+\frac{1}{k_{2}}+\cdots+\frac{1}{k_{n}}=1
$$

(Ref Ref 2242: Putnam)
10. Solve in positive integers $\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=2$
(Ref Ref 2241: UK Olympiad)

